2024

Lynch, Jason; Smith, Evan; Alfieri, Adam; Song, Baokun; Klein, Matthew; Stevens, Christopher E.; Chen, Cindy Yueli; Lawrence, Chavez FK.; Kagan, Cherie R.; Gu, Honggang; Liu, Shiyuan; Peng, Lian-Mao; Vangala, Shivashankar; Hendrickson, Joshua R.; Jariwala, Deep
Gate-Tunable Optical Anisotropy in Wafer-Scale, Aligned Carbon Nanotube Films Journal Article
In: Nature Photonics, 2024.
@article{Lynch2024b,
title = {Gate-Tunable Optical Anisotropy in Wafer-Scale, Aligned Carbon Nanotube Films},
author = {Jason Lynch and Evan Smith and Adam Alfieri and Baokun Song and Matthew Klein and Christopher E. Stevens and Cindy Yueli Chen and Chavez FK. Lawrence and Cherie R. Kagan and Honggang Gu and Shiyuan Liu and Lian-Mao Peng and Shivashankar Vangala and Joshua R. Hendrickson and Deep Jariwala},
doi = {10.1038/s41566-024-01504-0},
year = {2024},
date = {2024-08-14},
urldate = {2024-08-14},
journal = {Nature Photonics},
abstract = {Telecommunications and polarimetry both require the active control of the polarization of light. Currently, this is done by combining intrinsically anisotropic materials with tunable isotropic materials into heterostructures using complicated fabrication techniques owing to the lack of scalable materials that possess both properties. Tunable birefringent and dichromic materials are scarce and rarely available in high-quality thin films over wafer scales. Here we report semiconducting, highly aligned, single-walled carbon nanotubes (SWCNTs) over 4″ wafers with normalized birefringence and dichroism values of 0.09 and 0.58, respectively. The real and imaginary parts of the refractive index of these SWCNT films are tuned by up to 5.9% and 14.3% in the infrared at 2,200 nm and 1,660 nm, respectively, using electrostatic doping. Our results suggest that aligned SWCNTs are among the most anisotropic and tunable optical materials known and open new avenues for their application in integrated photonics and telecommunications.},
keywords = {carbon nanotubes, gate-tunable refractive index, in-plane anisotropy, nanowires, optical properties, thin films},
pubstate = {published},
tppubtype = {article}
}
Telecommunications and polarimetry both require the active control of the polarization of light. Currently, this is done by combining intrinsically anisotropic materials with tunable isotropic materials into heterostructures using complicated fabrication techniques owing to the lack of scalable materials that possess both properties. Tunable birefringent and dichromic materials are scarce and rarely available in high-quality thin films over wafer scales. Here we report semiconducting, highly aligned, single-walled carbon nanotubes (SWCNTs) over 4″ wafers with normalized birefringence and dichroism values of 0.09 and 0.58, respectively. The real and imaginary parts of the refractive index of these SWCNT films are tuned by up to 5.9% and 14.3% in the infrared at 2,200 nm and 1,660 nm, respectively, using electrostatic doping. Our results suggest that aligned SWCNTs are among the most anisotropic and tunable optical materials known and open new avenues for their application in integrated photonics and telecommunications.

Lee, J; Zhao, T; Yang, S; Muduli, M; Murray, CB; Kagan, CR
One-pot heat-up synthesis of short-wavelength infrared, colloidal InAs quantum dots Journal Article
In: The Journal of Chemical Physics, vol. 160, pp. 071103, 2024.
@article{nokey,
title = {One-pot heat-up synthesis of short-wavelength infrared, colloidal InAs quantum dots},
author = {J Lee and T Zhao and S Yang and M Muduli and CB Murray and CR Kagan},
url = {https://pubs.aip.org/aip/jcp/article/160/7/071103/3266823},
doi = {10.1063/5.0187162},
year = {2024},
date = {2024-02-21},
urldate = {2024-02-21},
journal = {The Journal of Chemical Physics},
volume = {160},
pages = {071103},
abstract = {III–V colloidal quantum dots (QDs) promise Pb and Hg-free QD compositions with which to build short-wavelength infrared (SWIR) optoelectronic devices. However, their synthesis is limited by the availability of group-V precursors with controllable reactivities to prepare monodisperse, SWIR-absorbing III–V QDs. Here, we report a one-pot heat-up method to synthesize ∼8 nm edge length (∼6.5 nm in height) tetrahedral, SWIR-absorbing InAs QDs by increasing the [In3+]:[As3+] ratio introduced using commercially available InCl3 and AsCl3 precursors and by decreasing the concentration and optimizing the volume of the reducing reagent superhydride to control the concentration of In(0) and As(0) intermediates through QD nucleation and growth. InAs QDs are treated with NOBF4, and their deposited films are exchanged with Na2S to yield n-type InAs QD films. We realize the only colloidal InAs QD photoconductors with responsivity at the technologically important wavelength of 1.55 μm.},
keywords = {colloids, nanocrystal, nanocrystal electronics, optical properties, quantum dots, semiconductors, spectroscopy, surface modification, synthesis, TEM, thin films, transport},
pubstate = {published},
tppubtype = {article}
}
III–V colloidal quantum dots (QDs) promise Pb and Hg-free QD compositions with which to build short-wavelength infrared (SWIR) optoelectronic devices. However, their synthesis is limited by the availability of group-V precursors with controllable reactivities to prepare monodisperse, SWIR-absorbing III–V QDs. Here, we report a one-pot heat-up method to synthesize ∼8 nm edge length (∼6.5 nm in height) tetrahedral, SWIR-absorbing InAs QDs by increasing the [In3+]:[As3+] ratio introduced using commercially available InCl3 and AsCl3 precursors and by decreasing the concentration and optimizing the volume of the reducing reagent superhydride to control the concentration of In(0) and As(0) intermediates through QD nucleation and growth. InAs QDs are treated with NOBF4, and their deposited films are exchanged with Na2S to yield n-type InAs QD films. We realize the only colloidal InAs QD photoconductors with responsivity at the technologically important wavelength of 1.55 μm.
2022

Zhao, Tianshuo; Zhao, Qinghua; Lee, Jaeyoung; Yang, Shengsong; Wang, Han; Chuang, Ming-Yuan; He, Yulian; Thompson, Sarah M.; Liu, Guannan; Oh, Nuri; Murray, Christopher B.; Kagan, Cherie R.
Engineering the Surface Chemistry of Colloidal InP Quantum Dots for Charge Transport Journal Article
In: Chemistry of Materials, vol. 34, iss. 18, pp. 8306–8315, 2022.
@article{Zhao2022,
title = {Engineering the Surface Chemistry of Colloidal InP Quantum Dots for Charge Transport},
author = {Tianshuo Zhao and Qinghua Zhao and Jaeyoung Lee and Shengsong Yang and Han Wang and Ming-Yuan Chuang and Yulian He and Sarah M. Thompson and Guannan Liu and Nuri Oh and Christopher B. Murray and Cherie R. Kagan},
url = {https://pubs.acs.org/doi/full/10.1021/acs.chemmater.2c01840},
doi = {10.1021/acs.chemmater.2c01840},
year = {2022},
date = {2022-09-07},
urldate = {2022-09-07},
journal = {Chemistry of Materials},
volume = {34},
issue = {18},
pages = {8306–8315},
abstract = {Colloidal InP quantum dots (QDs) have emerged as potential candidates for constructing nontoxic QD-based optoelectronic devices. However, charge transport in InP QD thin-film assemblies has been limitedly explored. Herein, we report the synthesis of ∼8 nm edge length (∼6.5 nm in height), tetrahedral InP QDs and study charge transport in thin films using the platform of the field-effect transistor (FET). We design a hybrid ligand-exchange strategy that combines solution-based exchange with S2– and solid-state exchange with N3– to enhance interdot coupling and control the n-doping of InP QD films. Further modifying the QD surface with thin, thermally evaporated Se overlayers yields FETs with an average electron mobility of 0.45 cm2 V–1 s–1, ∼10 times that of previously reported devices, and a higher on–off current ratio of 103–104. Analytical measurements suggest lower trap-state densities and longer carrier lifetimes in the Se-modified InP QD films, giving rise to a four-time longer carrier diffusion length.},
keywords = {ligand exchange, ligands, mobility, quantum dots, thin films, transport},
pubstate = {published},
tppubtype = {article}
}
Colloidal InP quantum dots (QDs) have emerged as potential candidates for constructing nontoxic QD-based optoelectronic devices. However, charge transport in InP QD thin-film assemblies has been limitedly explored. Herein, we report the synthesis of ∼8 nm edge length (∼6.5 nm in height), tetrahedral InP QDs and study charge transport in thin films using the platform of the field-effect transistor (FET). We design a hybrid ligand-exchange strategy that combines solution-based exchange with S2– and solid-state exchange with N3– to enhance interdot coupling and control the n-doping of InP QD films. Further modifying the QD surface with thin, thermally evaporated Se overlayers yields FETs with an average electron mobility of 0.45 cm2 V–1 s–1, ∼10 times that of previously reported devices, and a higher on–off current ratio of 103–104. Analytical measurements suggest lower trap-state densities and longer carrier lifetimes in the Se-modified InP QD films, giving rise to a four-time longer carrier diffusion length.
2021

Zhao, Qinghua; Yang, Shengsong; Ng, Jonah J.; Xu, Jun; Choi, Yun Chang; Murray, Christopher B.; Kagan, Cherie R.
Impurities in Nanocrystal Thin-Film Transistors Fabricated by Cation Exchange Journal Article
In: The Journal of Physical Chemistry Letters, vol. 12, no. 28, pp. 6514–6518, 2021.
@article{Zhao2021b,
title = {Impurities in Nanocrystal Thin-Film Transistors Fabricated by Cation Exchange},
author = {Qinghua Zhao and Shengsong Yang and Jonah J. Ng and Jun Xu and Yun Chang Choi and Christopher B. Murray and Cherie R. Kagan},
url = {https://doi.org/10.1021/acs.jpclett.1c01551},
doi = {10.1021/acs.jpclett.1c01551},
year = {2021},
date = {2021-07-09},
urldate = {2021-07-09},
journal = {The Journal of Physical Chemistry Letters},
volume = {12},
number = {28},
pages = {6514–6518},
abstract = {Cation exchange is a versatile tool used to alter the composition of nanostructures and thus to design next-generation catalysts and photonic and electronic devices. However, chemical impurities inherited from the starting materials can degrade device performance. Here, we use a sequential cation-exchange process to convert PbSe into CdSe nanocrystal thin films and study their temperature-dependent electrical properties in the platform of the thin-film transistor. We show that residual Pb impurities have detrimental effects on the device turn-on, hysteresis, and electrical stability, and as the amount increases from 2% to 7%, the activation energy for carrier transport increases from 38(3) to 62(2) meV. Selection and surface functionalization of the transistor’s gate oxide layer and low-temperature atomic-layer deposition encapsulation of the thin-film channel suppress these detrimental effects. By conversion of the nanocrystal thin films layer upon layer, impurities are driven away from the gate–oxide interface and mobilities improve from 3(1) to 32(3) cm2 V–1 s–1.},
keywords = {CdSe, impurities, interfaces, nanocrystal electronics, thin films, transistors, transport},
pubstate = {published},
tppubtype = {article}
}
Cation exchange is a versatile tool used to alter the composition of nanostructures and thus to design next-generation catalysts and photonic and electronic devices. However, chemical impurities inherited from the starting materials can degrade device performance. Here, we use a sequential cation-exchange process to convert PbSe into CdSe nanocrystal thin films and study their temperature-dependent electrical properties in the platform of the thin-film transistor. We show that residual Pb impurities have detrimental effects on the device turn-on, hysteresis, and electrical stability, and as the amount increases from 2% to 7%, the activation energy for carrier transport increases from 38(3) to 62(2) meV. Selection and surface functionalization of the transistor’s gate oxide layer and low-temperature atomic-layer deposition encapsulation of the thin-film channel suppress these detrimental effects. By conversion of the nanocrystal thin films layer upon layer, impurities are driven away from the gate–oxide interface and mobilities improve from 3(1) to 32(3) cm2 V–1 s–1.
2016

Goodwin, E. D.; Straus, Daniel B.; Gaulding, E. Ashley; Murray, Christopher B.; Kagan, Cherie R.
The effects of inorganic surface treatments on photogenerated carrier mobility and lifetime in PbSe quantum dot thin films Journal Article
In: Chemical Physics , vol. 471, pp. 81-88, 2016.
@article{Goodwin2016,
title = {The effects of inorganic surface treatments on photogenerated carrier mobility and lifetime in PbSe quantum dot thin films},
author = {E.D. Goodwin and Daniel B. Straus and E. Ashley Gaulding and Christopher B. Murray and Cherie R. Kagan},
url = {https://www.sciencedirect.com/science/article/abs/pii/S0301010415002220},
doi = {10.1016/j.chemphys.2015.07.031},
year = {2016},
date = {2016-06-01},
journal = {Chemical Physics },
volume = {471},
pages = {81-88},
abstract = {We used flash-photolysis, time-resolved microwave conductivity (TRMC) to probe the carrier mobility and lifetime in PbSe quantum dot (QD) thin films treated with solutions of the metal salts of Na2Se and PbCl2. The metal salt treatments tuned the Pb:Se stoichiometry and swept the Fermi energy throughout the QD thin film bandgap. A stoichiometric imbalance favoring excess Se heavily p-doped the QD thin film, shifted the Fermi energy toward the valence band, and yielded the highest TRMC mobility and lifetime. Introducing Pb first compensated the p-doping and shifted the Fermi level through mid-gap, decreasing the TRMC mobility. Further Pb addition created an excess of Pb, n-doped the QD thin film, moved the Fermi level to near the conduction band, and again increased the TRMC mobility. The increase in TRMC mobility as the Fermi energy was shifted toward the band edges by non-stoichiometry is consistent with the QD thin film density of states.},
keywords = {mobility, PbSe, quantum dots, surface modification, thin films, transport},
pubstate = {published},
tppubtype = {article}
}
We used flash-photolysis, time-resolved microwave conductivity (TRMC) to probe the carrier mobility and lifetime in PbSe quantum dot (QD) thin films treated with solutions of the metal salts of Na2Se and PbCl2. The metal salt treatments tuned the Pb:Se stoichiometry and swept the Fermi energy throughout the QD thin film bandgap. A stoichiometric imbalance favoring excess Se heavily p-doped the QD thin film, shifted the Fermi energy toward the valence band, and yielded the highest TRMC mobility and lifetime. Introducing Pb first compensated the p-doping and shifted the Fermi level through mid-gap, decreasing the TRMC mobility. Further Pb addition created an excess of Pb, n-doped the QD thin film, moved the Fermi level to near the conduction band, and again increased the TRMC mobility. The increase in TRMC mobility as the Fermi energy was shifted toward the band edges by non-stoichiometry is consistent with the QD thin film density of states.
2015

Gaulding, E. Ashley; Diroll, Benjamin T.; Goodwin, E. D.; Vrtis, Zachary J.; Kagan, Cherie R.; Murray, Christopher B.
Deposition of Wafer-Scale Single-Component and Binary Nanocrystal Superlattice Thin Films Via Dip-Coating Journal Article
In: Advanced Materials, vol. 27, iss. 18, pp. 2846-2851, 2015.
@article{Gaulding2015,
title = {Deposition of Wafer-Scale Single-Component and Binary Nanocrystal Superlattice Thin Films Via Dip-Coating},
author = {E. Ashley Gaulding and Benjamin T. Diroll and E. D. Goodwin and Zachary J. Vrtis and Cherie R. Kagan and Christopher B. Murray},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201405575},
doi = {10.1002/adma.201405575},
year = {2015},
date = {2015-03-27},
journal = {Advanced Materials},
volume = {27},
issue = {18},
pages = {2846-2851},
abstract = {Single-component and binary nanocrystal superlattices are assembled over wafer-scale areas using the dip-coating method. A series of measurements are performed to confirm superlattice assembly. This study demonstrates the versatility of dip-coating in depositing a diverse set of nanocrystal materials and superlattice structures, while combining large-area deposition with nanoscale control.},
keywords = {nanocrystal, superlattices, thin films},
pubstate = {published},
tppubtype = {article}
}
Single-component and binary nanocrystal superlattices are assembled over wafer-scale areas using the dip-coating method. A series of measurements are performed to confirm superlattice assembly. This study demonstrates the versatility of dip-coating in depositing a diverse set of nanocrystal materials and superlattice structures, while combining large-area deposition with nanoscale control.
2014

Cativo, Ma. Helen M.; Kim, David K.; Riggleman, Robert A.; Yager, Kevin G.; Nonnenmann, Stephen S.; Chao, Huikuan; Black, Dawn A. BonnellvCharles T.; Kagan, Cherie R.; Park, So-Jung
Air–Liquid Interfacial Self-Assembly of Conjugated Block Copolymers into Ordered Nanowire Arrays Journal Article
In: ACS Nano, vol. 8, no. 12, pp. 12755–12762, 2014.
@article{Cativo2014,
title = {Air–Liquid Interfacial Self-Assembly of Conjugated Block Copolymers into Ordered Nanowire Arrays},
author = {Ma. Helen M. Cativo and David K. Kim and Robert A. Riggleman and Kevin G. Yager and Stephen S. Nonnenmann and Huikuan Chao and Dawn A. BonnellvCharles T. Black and Cherie R. Kagan and So-Jung Park},
url = {https://pubs.acs.org/doi/full/10.1021/nn505871b},
doi = {10.1021/nn505871b},
year = {2014},
date = {2014-12-08},
urldate = {2014-12-08},
journal = {ACS Nano},
volume = {8},
number = {12},
pages = {12755–12762},
abstract = {The ability to control the molecular packing and nanoscale morphology of conjugated polymers is important for many of their applications. Here, we report the fabrication of well-ordered nanoarrays of conjugated polymers, based on the self-assembly of conjugated block copolymers at the air–liquid interface. We demonstrate that the self-assembly of poly(3-hexylthiophene)-block-poly(ethylene glycol) (P3HT-b-PEG) at the air–water interface leads to large-area free-standing films of well-aligned P3HT nanowires. Block copolymers with high P3HT contents (82–91%) formed well-ordered nanoarrays at the interface. The fluidic nature of the interface, block copolymer architecture, and rigid nature of P3HT were necessary for the formation of well-ordered nanostructures. The free-standing films formed at the interface can be readily transferred to arbitrary solid substrates. The P3HT-b-PEG films are integrated in field-effect transistors and show orders of magnitude higher charge carrier mobility than spin-cast films, demonstrating that the air–liquid interfacial self-assembly is an effective thin film fabrication tool for conjugated block copolymers.},
keywords = {copolymers, interfaces, organic compounds, self-assembly, self-organization, thin films},
pubstate = {published},
tppubtype = {article}
}
The ability to control the molecular packing and nanoscale morphology of conjugated polymers is important for many of their applications. Here, we report the fabrication of well-ordered nanoarrays of conjugated polymers, based on the self-assembly of conjugated block copolymers at the air–liquid interface. We demonstrate that the self-assembly of poly(3-hexylthiophene)-block-poly(ethylene glycol) (P3HT-b-PEG) at the air–water interface leads to large-area free-standing films of well-aligned P3HT nanowires. Block copolymers with high P3HT contents (82–91%) formed well-ordered nanoarrays at the interface. The fluidic nature of the interface, block copolymer architecture, and rigid nature of P3HT were necessary for the formation of well-ordered nanostructures. The free-standing films formed at the interface can be readily transferred to arbitrary solid substrates. The P3HT-b-PEG films are integrated in field-effect transistors and show orders of magnitude higher charge carrier mobility than spin-cast films, demonstrating that the air–liquid interfacial self-assembly is an effective thin film fabrication tool for conjugated block copolymers.

Diroll, Benjamin T.; Doan-Nguyen, Vicky V. T.; Cargnello, Matteo; Gaulding, E. Ashley; Kagan, Cherie R.; Murray, Christopher B.
X-ray Mapping of Nanoparticle Superlattice Thin Films Journal Article
In: ACS Nano, vol. 8, no. 12, pp. 12843–12850, 2014.
@article{Diroll2014,
title = {X-ray Mapping of Nanoparticle Superlattice Thin Films},
author = {Benjamin T. Diroll and Vicky V. T. Doan-Nguyen and Matteo Cargnello and E. Ashley Gaulding and Cherie R. Kagan and Christopher B. Murray},
url = {https://pubs.acs.org/doi/full/10.1021/nn5062832},
doi = {10.1021/nn5062832},
year = {2014},
date = {2014-12-05},
urldate = {2014-12-05},
journal = {ACS Nano},
volume = {8},
number = {12},
pages = {12843–12850},
abstract = {We combine grazing-incidence and transmission small-angle X-ray diffraction with electron microscopy studies to characterize the structure of nanoparticle films with long-range order. Transmission diffraction is used to collect in-plane diffraction data from single grains and locally aligned nanoparticle superlattice films. Systematic mapping of samples can be achieved by translating the sample in front of the X-ray beam with a spot size selected to be on the order of superlattice grain features. This allows a statistical determination of superlattice grain size and size distribution over much larger areas than typically accessible with electron microscopy. Transmission X-ray measurements enables spatial mapping of the grain size, orientation, uniformity, strain, or crystal projections and polymorphs. We expand this methodology to binary nanoparticle superlattice and nanorod superlattice films. This study provides a framework for characterization of nanoparticle superlattices over large areas which complements or expands microstructure information from real-space imaging.},
keywords = {nanocrystal, nanoparticle assembly, superlattices, thin films},
pubstate = {published},
tppubtype = {article}
}
We combine grazing-incidence and transmission small-angle X-ray diffraction with electron microscopy studies to characterize the structure of nanoparticle films with long-range order. Transmission diffraction is used to collect in-plane diffraction data from single grains and locally aligned nanoparticle superlattice films. Systematic mapping of samples can be achieved by translating the sample in front of the X-ray beam with a spot size selected to be on the order of superlattice grain features. This allows a statistical determination of superlattice grain size and size distribution over much larger areas than typically accessible with electron microscopy. Transmission X-ray measurements enables spatial mapping of the grain size, orientation, uniformity, strain, or crystal projections and polymorphs. We expand this methodology to binary nanoparticle superlattice and nanorod superlattice films. This study provides a framework for characterization of nanoparticle superlattices over large areas which complements or expands microstructure information from real-space imaging.

Oh, Soong Ju; Wang, Zhuqing; Berry, Nathaniel E.; Choi, Ji-Hyuk; Zhao, Tianshuo; Gaulding, E. Ashley; Paik, Taejong; Lai, Yuming; Murray, Christopher B.; Kagan, Cherie R.
Engineering Charge Injection and Charge Transport for High Performance PbSe Nanocrystal Thin Film Devices and Circuits Journal Article
In: Nano Letters, vol. 14, no. 11, pp. 6210–6216, 2014.
@article{Oh2014,
title = {Engineering Charge Injection and Charge Transport for High Performance PbSe Nanocrystal Thin Film Devices and Circuits},
author = {Soong Ju Oh and Zhuqing Wang and Nathaniel E. Berry and Ji-Hyuk Choi and Tianshuo Zhao and E. Ashley Gaulding and Taejong Paik and Yuming Lai and Christopher B. Murray and Cherie R. Kagan},
url = {https://pubs.acs.org/doi/full/10.1021/nl502491d},
doi = {10.1021/nl502491d},
year = {2014},
date = {2014-10-09},
journal = {Nano Letters},
volume = {14},
number = {11},
pages = {6210–6216},
abstract = {We study charge injection and transport in PbSe nanocrystal thin films. By engineering the contact metallurgy and nanocrystal ligand exchange chemistry and surface passivation, we demonstrate partial Fermi-level pinning at the metal–nanocrystal interface and an insulator-to-metal transition with increased coupling and doping, allowing us to design high conductivity and mobility PbSe nanocrystal films. We construct complementary nanocrystal circuits from n-type and p-type transistors realized from a single nanocrystal material by selecting the contact metallurgy.},
keywords = {doping, interfaces, ligand exchange, mobility, nanocrystal, nanocrystal electronics, PbSe, surface interactions, surface modification, thin films, transistors, transport},
pubstate = {published},
tppubtype = {article}
}
We study charge injection and transport in PbSe nanocrystal thin films. By engineering the contact metallurgy and nanocrystal ligand exchange chemistry and surface passivation, we demonstrate partial Fermi-level pinning at the metal–nanocrystal interface and an insulator-to-metal transition with increased coupling and doping, allowing us to design high conductivity and mobility PbSe nanocrystal films. We construct complementary nanocrystal circuits from n-type and p-type transistors realized from a single nanocrystal material by selecting the contact metallurgy.

Diroll, Benjamin T.; Gordon, Thomas R.; Gaulding, E. Ashley; Klein, Dahlia R.; Paik, Taejong; Yun, Hyeong Jin; Goodwin, E. D.; Damodhar, Divij; Kagan, Cherie R.; Murray, Christopher B.
Synthesis of N-Type Plasmonic Oxide Nanocrystals and the Optical and Electrical Characterization of their Transparent Conducting Films Journal Article
In: Chemistry of Materials, vol. 26, no. 15, pp. 4579–4588, 2014.
@article{Diroll2014b,
title = {Synthesis of N-Type Plasmonic Oxide Nanocrystals and the Optical and Electrical Characterization of their Transparent Conducting Films},
author = {Benjamin T. Diroll and Thomas R. Gordon and E. Ashley Gaulding and Dahlia R. Klein and Taejong Paik and Hyeong Jin Yun and E.D. Goodwin and Divij Damodhar and Cherie R. Kagan and Christopher B. Murray},
url = {https://pubs.acs.org/doi/full/10.1021/cm5018823},
doi = {10.1021/cm5018823},
year = {2014},
date = {2014-07-18},
journal = {Chemistry of Materials},
volume = {26},
number = {15},
pages = {4579–4588},
abstract = {We present a general synthesis for a family of n-type transparent conducting oxide nanocrystals through doping with aliovalent cations. These monodisperse nanocrystals exhibit localized surface plasmon resonances tunable in the mid- and near-infrared with increasing dopant concentration. We employ a battery of electrical measurements to demonstrate that the plasmonic resonance in isolated particles is consistent with the electronic properties of oxide nanocrystal thin films. Hall and Seebeck measurements show that the particles form degenerately doped n-type solids with free electron concentrations in the range of 1019 to 1021 cm–3. These heavily doped oxide nanocrystals are used as the building blocks of conductive, n-type thin films with high visible light transparency.},
keywords = {doping, nanocrystal, nanocrystal electronics, optical properties, plasmonic, thin films},
pubstate = {published},
tppubtype = {article}
}
We present a general synthesis for a family of n-type transparent conducting oxide nanocrystals through doping with aliovalent cations. These monodisperse nanocrystals exhibit localized surface plasmon resonances tunable in the mid- and near-infrared with increasing dopant concentration. We employ a battery of electrical measurements to demonstrate that the plasmonic resonance in isolated particles is consistent with the electronic properties of oxide nanocrystal thin films. Hall and Seebeck measurements show that the particles form degenerately doped n-type solids with free electron concentrations in the range of 1019 to 1021 cm–3. These heavily doped oxide nanocrystals are used as the building blocks of conductive, n-type thin films with high visible light transparency.
2014
“Designing High-Performance PbS and PbSe Nanocrystal Electronic Devices through Stepwise, Post-Synthesis, Colloidal Atomic Layer Deposition,” Soong Ju Oh, Nathaniel E. Berry, Ji-Hyuk Choi, E. Ashley Gaulding, Hangfei Lin, Taejong Paik, Benjamin. T. Diroll, Shin Muramoto, Christopher B. Murray, and Cherie R. Kagan NANO Letters, 14 (3) 1559-1566 (2014)
“Air-Stable, Nanostructured Electronic and Plasmonic Materials from Solution-Processable, Silver Nanocrystal Building Blocks,” Aaron T. Fafarman, Sung-Hoon Hong, Soong Ju Oh, Humeyra Caglayan, Xingchen Ye, Benjamin T. Diroll, Nader Engheta, Christopher B. Murray, and Cherie R. Kagan ACS NANO, 8 (3) 2746-2754 (2014)
“Solution-Processed Phase-Change VO2 Metamaterials from Colloidal Vanadium Oxide (VOx) Nanocrystals,” Taejong Paik, Sung-Hoon Hong, E. Ashley Gaulding, Humeyra Caglayan, Thomas R. Gordon, Nader Engheta, Cherie R. Kagan, and Christopher B. Murray ACS NANO, 8 (1) 797-806 (2014)
2013
“Solution-Based Stoichiometric Control over Charge Transport in Nanocrystalline CdSe Devices,” David K. Kim, Aaron T. Fafarman, Benjamin T. Diroll, Silvia H Chan, Thomas R. Gordon, Christopher B. Murray, and Cherie R. Kagan ACS NANO, 7 (10) 8760-8770 (2013)
“Crystallographic anisotropy of the resistivity size effect in single crystal tungsten nanowires,” Dooho Choi, Matthew Moneck, Xuan Liu, Soong Ju Oh, Cherie R. Kagan, Kevin R. Coffey, & Katayun Barmak Scientific Reports, 3 (2591) 1-4 (2013)
“In-situ Repair of High-Performance, Flexible Nanocrystal Electronics for Large-Area Fabrication and Operation in Air,” Ji-Hyuk Choi, Soong Ju Oh, Yuming Lai, David K. Kim, Tianshuo Zhao, Aaron T. Fafarman, Benjamin T. Diroll, Christopher B. Murray, and Cherie R. Kagan ACS Nano, 7 (9) 8275-8283 (2013)
“Near-Infrared Metatronic Nanocircuits by Design,” Humeyra Caglayan*, Sung-Hoon Hong*, Brian Edwards, Cherie R. Kagan, and Nader Engheta Physical Review Letters, 111 073904 (2013)
* Indicates equal contribution
“Plasmonic Enhancement of Nanophosphor Upconversion Luminescence in Au Nanohole Arrays,” Marjan Saboktakin, Xingchen Ye, Uday K. Chettiar, Nader Engheta , Christopher B. Murray, and Cherie R. Kagan ACS Nano, 7 (8) 7186-7192 (2013)
“Competition of shape and interaction patchiness for self-assembling nanoplates,” Xingchen Ye, Jun Chen, Michael Engel, Jaime A. Millan, Wenbin Li, Liang Qi, Guozhong Xing, Joshua E. Collins, Cherie R. Kagan, Ju Li, Sharon C. Glotzer & Christopher B. Murray Nature Chemistry, 5 466-473 (2013)
“Stoichiometric Control of Lead Chalcogenide Nanocrystal Solids to Enhance Their Electronic and Optoelectronic Device Performance,” Soong Ju Oh, Nathaniel E. Berry, Ji-Hyuk Choi, E. Ashley Gaulding, Taejong Paik, Sung-Hoon Hong, Christopher B. Murray, and Cherie R. Kagan ACS Nano, 7 (3) 2413-2421 (2013)
“Engineering Catalytic Contacts and Thermal Stability: Gold/Iron Oxide Binary Nanocrystal Superlattices for CO Oxidation,” Yijin Kang, Xingchen Ye, Jun Chen, Liang Qi, Rosa E. Diaz, Vicky Doan-Nguyen, Guozhong Xing, Cherie R. Kagan, Ju Li, Raymond J. Gorte, Eric A. Stach, and Christopher B. Murray JACS, 135 4 1499-1505 (2013)
“Bistable Magnetoresistance Switching in Exchange-Coupled CoFe2O4-Fe3O4 Binary Nanocrystal Superlattices by Self-Assembly and Thermal Annealing,” Jun Chen, Xingchen Ye, Soong Ju Oh, James M. Kikkawa, Cherie R. Kagan, and Christopher B. Murray ACS Nano, 7(2) 1478-1486 (2013)
“Chemically Tailored Dielectric-to-Metal Transition for the Design of Metamaterials from Nanoimprinted Colloidal Nanocrystals,” Aaron T. Fafarman*, Sung-Hoon Hong*, Humeyra Caglayan, Xingchen Ye, Benjamin T. Diroll, Taejong Paik, Nader Engheta, Christopher B. Murray & Cherie R. Kagan Nano Letters, 13 (2) 350-357 (2013)
*=Equal Contributors
2012
“Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors,” David K. Kim*, Yuming Lai*, Benjamin T. Diroll, Christopher B. Murray & Cherie R. Kagan Nature Communications, 3 (1216) 1-6 (2012)
*=Equal Contributors
“The State of Nanoparticle-Based Nanoscience and Biotechnology: Progress, Promises, and Challenges,” Beatriz Pelaz, Sarah Jaber, Dorleta Jimenez de Aberasturi, Verena Wulf, Takuzo Aida, Jesus M. de la Fuente, Jochen Feldmann, Hermann E. Gaub, Lee Josephson, Cherie R. Kagan, Nicholas A. Kotov, Luis M. Liz-Marzan, Hedi Mattoussi, Paul Mulvaney, Christopher B. Murray, Andrey L. Rogach, Paul S. Weiss, Itamar Willner, and Wolfgang J. Parak, ACS Nano, 6 (10) 8468-8483 (2012)
“Metal Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” Marjan Saboktakin, Xingchen Ye, Soong Ju Oh, Sung-Hoon Hong, Aaron T. Fafarman, Uday K. Chettiar, Nader Engheta, Christopher B. Murray, and Cherie R. Kagan, ACS Nano, 6 (10) 8758-8766 (2012)
“Bandlike Transport in Strongly Coupled and Doped Quantum Dot Solids: A Route to High-Performance Thin-Film Electronics,” Ji-Hyuk Choi, Aaron T. Fafarman, Soong Ju Oh, Dong-Kyun Ko, David K. Kim, Benjamin T. Diroll, Shin Muramoto, J. Greg Gillen, Christopher B. Murray, and Cherie R. Kagan, Nano Letters, 12 (5) 2631-2638 (2012)
“Remote Doping and Schottky Barrier Formation in Strongly Quantum Confined Single PbSe Nanowire Field-Effect Transistors,” Soong Ju Oh, David K. Kim, and Cherie. R. Kagan, ACS Nano, 6 (5) 4328-4334 (2012)
“Wrinkles and deep folds as photonic structures in photovoltaics,” Jong Bok Kim, Pilnam Kim, Nicolas C. Pgard, Soong Ju Oh, Cherie R. Kagan, Jason W. Fleischer, Howard A. Stone and Yueh-Lin Loo, Nature Photonics, 6 327-332 (2012)
“An Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through the Use of Aromatic Additives,” Xingchen Ye, Linghua Jin, Humeyra Caglayan, Jun Chen, Guozhong Xing, Chen Zheng, Vicky Doan-Nguyen, Yijin Kang, Nader Engheta, Cherie R. Kagan, and Christopher B. Murray, ACS Nano, 6 2804-2817 (2012)
“Molecular Monolayers as Semiconducting Channels in Field Effect Transistors,” Cherie R. Kagan, Topics in Current Chemistry, 312 213-237, (2012)
2011
“Flexible, Low-Voltage, and Low-Hysteresis PbSe Nanowire Field-Effect Transistors,” David K. Kim, Yuming Lai, Tarun R. Vemulkar, and Cherie R. Kagan, ACS Nano, 5 (12) 10074-10083, (2011)
“Thiocyanate-capped PbS nanocubes: ambipolar transport enables quantum dot-based circuits on a flexible substrate,” Weon-kyu Koh , Sangameshwar R Saudari , Aaron T. Fafarman , Cherie R. Kagan , and Christopher B. Murray, Nano Letters, 11 (11) 4764-4767, (2011)
“Near-Infrared Absorption of Monodisperse Silver Telluride (Ag2Te) Nanocrystals and Photoconductive Response of Their Self-Assembled Superlattices,” Yu-Wen Liu, Dong-Kyun Ko, Soong Ju Oh, Thomas R. Gordon, Vicky Doan-Nguyen, Taejong Paik, Yijin Kang, Xingchen Ye, Linghua Jin, Cherie R. Kagan, and Christopher B. Murray, ACS Chemistry of Materials, 23 (21) 4657-4659, (2011)
“Diketopyrrolopyrrole-based p-bridged Donor-Acceptor Polymer for Photovoltaic Applications,” Wenting Li, Taegweon Lee, Soong Ju Oh, and Cherie R. Kagan, ACS Applied Materials and Interfaces, 3 (10) 3874-3883 (2011)
“Flexible Organic Electronics for Use in Neural Sensing,” Hank Bink*, Yuming Lai*, Sangamweshwar Rao Saudari, Brian Helfer, Jonathan Viventi, Jan Van der Spiegel, Brian Litt, Cherie Kagan, IEEE EMBC 2011 5400-5403 (2011)
* = Equal Contributors
“Thiocyanate Capped Nanocrystal Colloids: A Vibrational Reporter of Surface Chemistry and a Solution-based Route to Enhanced Coupling in Nanocrystal Solids,” Aaron T. Fafarman, Weon-kyu Koh, Benjamin T. Diroll, David K. Kim, Dong-Kyun Ko, Soong Ju Oh, Xingchen Ye, Vicky Doan-Nguyen, Michael R. Crump, Danielle C. Reifsnyder, Christopher B. Murray, and Cherie R. Kagan, Journal of the American Chemical Society, 133 (39), 15753-15761, (2011)
“Ambipolar and Unipolar PbSe Nanowire Field-Effect Transistors,” David K. Kim, Tarun R. Vemulkar, Soong-Ju Oh, Weon-kyu Koh, Christopher B. Murray and Cherie R. Kagan, ACS Nano, 5 (4), 3230-3236, (2011)
“Multiscale Periodic Assembly of Striped Nanocrystal Superlattice Films on a Liquid Surface,” Angang Dong, Jun Chen, Soong Ju Oh, Weon-kyu Koh, Faxian Xiu, Xingchen Ye, Dong-Kyun Ko, Kang L. Wang, Cherie R. Kagan, and Christopher B. Murray, Nano Letters, 11 (2), 841-846, (2011)
2010
“Comparison of the Energy-level Alignment of Thiolate- and Carbodithiolate-Bound Self-Assembled Monolayers on Gold,” Philip Schulz, Christopher D. Zangmeister, Yi-Lei Zhao, Paul R. Frail, Sangameshwar R. Saudari, Carlos A. Gonzalez, Cherie R. Kagan, Matthias Wuttig, and Roger D. van Zee, Journal of Physical Chemistry C, 114 (48), 20843-20851, (2010)
“Device Configurations for Ambipolar Transport in Flexible, Pentacene Transistors,” Sangameshwar Rao Saudari, Yu Jen Lin, Yuming Lai and Cherie R. Kagan, Advanced Materials, 44, 5063-5068, (2010)
“Small-Molecule Thiophene-C60 Dyads As Compatibilizers in Inverted Polymer Solar Cells,” Jong Bok Kim, Kathryn Allen, Soong Ju Oh, Stephanie Lee, Michael F. Toney, Youn Sang Kim, Cherie R. Kagan, Colin Nuckolls, and Yueh-Lin Loo, Chemistry of Materials, 22 (20), pp 5762-5773 (2010)
2009
“Ambipolar transport in solution-deposited pentacene transistors enhanced by molecular engineering of device contacts,” Sangameshwar Rao Saudari, Paul R. Frail, Cherie R. Kagan , Appl. Phys. Lett, 95, 023301 (2009)
2007
“Chemically Assisted Directed Assembly of Carbon Nanotubes for the Fabrication of Large-Scale Device Arrays,” G. S. Tulevski, J. Hannon, A. Afzali, Z. Chen, Ph. Avouris, C. R. Kagan, J. American Chemical Society, 129 (39), 11964 (2007)
“Alignment, Electronic Properties, Doping, and On-Chip Growth of Colloidal PbSe Nanowires,” D. V. Talapin, C. T. Black, C. R. Kagan, E. V. Shevchenko, A. Afzali, C. B. Murray, J. Phys. Chem. C, 111 (35), 13244 (2007)
“Synergistic Effects in Binary Nanocrystal Superlattices: Enhanced p-Type Conductivity in Self-Assembled PbTe/Ag2Te Thin Films,” J. J. Urban, D. V. Talapin, E. V. Shevchenko, C. R. Kagan, C. B. Murray, Nature Materials, 6 (2), 115 (2007).
“Molecular Assemblies: Briding the Gap to Form Molecular Junctions,” C. R. Kagan, C. Lin, in Multifunctional Conducting Molecular Materials, eds. G. Saito, F. Wudl, R. C. Haddon, K. Tanigaki, T. Enoki, H. E. Katz, M. Maesato, Royal Society of Chemistry, London 306, 248, (2007).
2006
“The Role of Chemical Contacts in Molecular Conductance,” N. D. Lang, C. R. Kagan, Nano Letters, 6, 2955 (2006).
“Enforced One-Dimensional Photoconductivity in Core-Cladding Hexabenzocorenenes,” Y. S. Cohen, S. Xiao, C. Nuckolls, C. R. Kagan, Nano Letters, 6, 2838 (2006).
“Organic and Organic-Inorganic Hybrid Molecular Devices,” Proceedings of the 12th International Micromachine/Nanotech Symposium, 31 (2006).
“Device Scaling in Sub-100 nm Pentacene FETs,” G. S. Tulevski, A. Afzali, T. O Graham, C. Nuckolls, C. R. Kagan, Applied Physics Letters, 89, 183101 (2006).
“Chemical Complementarity in the Contacts for Nanoscale Organic Field-Effect Transistors,” G. S. Tulevski, Q. Miao, A. Afzali, T. O. Graham, C. R. Kagan, C. Nuckolls, Journal of the American Chemical Society, 128, 1788 (2006).
2005
“Self-assembly and Oligomerization of Alkyne-Terminated Molecules on Metal and Oxide Surfaces,” L. Vyklicky, A. Afzali, C. R. Kagan, Langmuir, 21, 11574 (2005).
“Operational and Environmental Stability of Pentacene Thin Film Transistors,” C. R. Kagan, A. Afzali, T. O. Graham, Applied Physics Letters, 86, 193505 (2005).
“N-Sulfinylcarbamate-Pentacene Adduct; a Novel Pentacene Precursor Soluble in Alcohols,” A. Afzali, C. R. Kagan, G. Traub, Synthetic Metals, 155, 490 (2005).
“Electrostatic Field and Partial Fermi Level Pinning at the Pentacene-SiO2 Interface,” L. Chen, R. Ludeke, X. Cui, A. G. Schrott, C. R. Kagan, L. E. Brus, Journal of Physical Chemistry B, 109, 1834 (2005).
2004
“Molecular Transport Junctions: An Introduction,” C. R. Kagan, M. A. Ratner, MRS Bulletin, edited by C. R. Kagan, M. A. Ratner, 29, 376 (2004).
“Direct Assembly of Organic Semiconductors on Gate Oxides,” G. S. Tulevski, Q. Miao, M. Fukuto, R. Abram, B. Ocko, R. Pindak, C. R. Kagan, C. Nuckolls, Journal of the American Chemical Society, 126, 15048 (2004).
“Understanding the Molecular Transistor,” P. Solomon, C. R. Kagan in Future Trends in Microelectronics: The Nano, the Giga, and the Ultra, edited by S. Luryi, J. Xu, A. Zaslavsky, Wiley, NY (2004), p.168.
2003
“Evaluations and Considerations for Self-Assembled Monolayer Field-Effect Transistors,” C. R. Kagan, A. Afzali, R. Martel, L. M. Gignac, P. M. Solomon, A. Schrott, B. Ek, Nano Letters, 3, 119 (2003).
“Layer-by-Layer Growth of Metal-Metal Bonded Supramolecular Thin Films and Its Use in the Fabrication of Lateral Nanoscale Devices,” C. Lin and C. R. Kagan, Journal of the American Chemical Society, 125, 336 (2003).
“Organic-Inorganic Thin Film Transistors,” D. B. Mitzi, C. R. Kagan in Thin Film Transistors, edited by C. R. Kagan, P. S. Andry, Marcell-Dekker, NY, (2003), p. 475.
“Charge Transport on the Nanoscale,” D. Adams, L. Brus, C. E. D. Chidsey, S. Creager, C. Creutz, C. R. Kagan, P. Kamat, M. Lieberman, S. Lindsay, R. A. Marcus, R. M. Metzger, M. E. Michel-Beyerle, J. R. Miller, M. D. Newton, D. R. Rolison, O. Sankey, K. S. Schanze, J. Yardley, X. Zhu, Journal of Physical Chemistry B, 107, 6668 (2003).
2002
“An efficient synthesis of symmetrical oligothiophenes: Synthesis and transport properties of a soluble sexithiophene derivative,” A. Afzali, T. L. Breen, C. R. Kagan, Chemistry of Materials, 14(4), 1742 (2002) .
2001
“Patterning Organic-Inorganic Thin-Film Transistors Using Microcontact Printed Templates,” C. R. Kagan, T. L Breen, L. L. Kosbar, Applied Physics Letters 79 (21), 3536 (2001).
“Organic-Inorganic Electronics,” D. B. Mitzi, K. Chondroudis, C. R. Kagan, IBM Journal of Research and Development, 45, 29 (2001).
“Colloidal Synthesis of Nanocrystals and Nanocrystal Superlattices,” C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. Betley, C. R. Kagan, IBM Journal of Research and Development, 45, 47 (2001).
2000
“Synthesis and Characterization of Monodisperse Nanocrystals and Close Packed Nanocrystal Assemblies,” C. B. Murray, C. R. Kagan, M. G. Bawendi, Annual Review of Materials Science 30, 545, (2000).
“Photoconductivity in CdSe Quantum Dot Solids,” C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, Physical Review B, 62, 2669 (2000).
1999
“Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors,” C. R. Kagan, D. B. Mitzi, C. D. Dimitrakopoulos, Science, 286, 945 (1999).
“Design, Structure, and Optical Properties of Organic-Inorganic Perovskites Containing an Oligothiophene Chromophore,” David B. Mitzi, Konstantinos Chondroudis, Cherie R. Kagan, Inorganic Chemistry 38, 6246 (1999).
“Charge Generation and Transport in CdSe Semiconductor Quantum Dot Solids,” C. A. Leatherdale, N. Y. Morgan, C. R. Kagan, S. A. Empedocles, M. G. Bawendi, M. A. Kastner, MRS Proceedings 571, 191 (1999).
1998
“Submicron Confocal Raman Imaging of Holograms in Multicomponent Photopolymers,” C. R. Kagan, T. D. Harris, A. L. Harris, and M. L. Schilling, Journal of Chemical Physics, 108, 6892 (1998).
1996
“Long Range Resonance Transfer of Electronic Excitations in Close Packed CdSe Quantum Dot Solids,” C. R. Kagan, C. B. Murray, and M. G. Bawendi, Physical Review B, 54, 8633 (1996).
“Electronic Energy Transfer in CdSe Quantum Dot Solids,” C. R. Kagan, C. B. Murray, M. Nirmal, M. G. Bawendi, Physical Review Letters, 76, 1517 (1996).
1995
“Self Organization of CdSe Nanocrystallites into Three Dimensional Quantum Dot Superlattices,” C. B. Murray, C. R. Kagan, and M. G. Bawendi, Science, 270, 1335 (1995).
“Synthesis, Structural Characterization, and Optical Spectroscopy of Close Packed CdSe Nanocrystallites,” C. R. Kagan, C. B. Murray, M. G. Bawendi, MRS Proceedings, 358, 219 (1995).
1993
“Solution Precipitation of CdSe Quantum Dots,” C. R. Kagan, M. J. Cima, MRS Proceedings, 283, 841 (1993).
1992
“Ion-Exchange Reactions of Potassium Brannerite, K0.8(V0.8Mo1.2)O6,” Peter K. Davies and Cherie R. Kagan, Solid State Ionics, 53-56, 546-552 (1992).
Books and Journals Edited
“Molecular Transport Junctions,” edited by C. R. Kagan, M. A. Ratner, MRS Bulletin, Materials Research Society, PA, (2004).
“Thin Film Transistors,” edited by C. R. Kagan, P. S. Andry, Marcell-Dekker, NY, (2003).