2024

Marino, Emanuele; Vo, Thi; Gonzalez, Cristian; Rosen, Daniel J.; Neuhaus, Steven J.; Sciortino, Alice; Bharti, Harshit; Keller, Austin W.; Kagan, Cherie R.; Cannas, Marco; Messina, Fabrizio; Glotzer, Sharon C.; Murray, Christopher B.
Porous Magneto-Fluorescent Superparticles by Rapid Emulsion Densification Journal Article
In: Chemistry of Materials, 2024.
@article{Marino2024,
title = {Porous Magneto-Fluorescent Superparticles by Rapid Emulsion Densification},
author = {Emanuele Marino and Thi Vo and Cristian Gonzalez and Daniel J. Rosen and Steven J. Neuhaus and Alice Sciortino and Harshit Bharti and Austin W. Keller and Cherie R. Kagan and Marco Cannas and Fabrizio Messina and Sharon C. Glotzer and Christopher B. Murray},
url = {https://pubs.acs.org/doi/full/10.1021/acs.chemmater.3c03209},
doi = {10.1021/acs.chemmater.3c03209},
year = {2024},
date = {2024-04-01},
urldate = {2024-04-01},
journal = {Chemistry of Materials},
abstract = {Porous superstructures are characterized by a large surface area and efficient molecular transport. Although methods aimed at generating porous superstructures from nanocrystals exist, current state-of-the-art strategies are limited to single-component nanocrystal dispersions. More importantly, such processes afford little control over the size and shape of the pores. Here, we present a new strategy for the nanofabrication of porous magneto-fluorescent nanocrystal superparticles that are well controlled in size and shape. We synthesize these composite superparticles by confining semiconductor and superparamagnetic nanocrystals within oil-in-water droplets generated using microfluidics. The rapid densification of these droplets yields spherical, monodisperse, and porous nanocrystal superparticles. Molecular simulations reveal that the formation of pores throughout the superparticles is linked to repulsion between nanocrystals of different compositions, leading to phase separation during self-assembly. We confirm the presence of nanocrystal phase separation at the single superparticle level by analyzing the changes in the optical and photonic properties of the superstructures as a function of nanocrystal composition. This excellent agreement between experiments and simulations allows us to develop a theory that predicts superparticle porosity from experimentally tunable physical parameters, such as nanocrystal size ratio, stoichiometry, and droplet densification rate. Our combined theoretical, computational, and experimental findings provide a blueprint for designing porous, multifunctional superparticles with immediate applications in catalytic, electrochemical, sensing, and cargo delivery applications.},
keywords = {emulsions, lasers, magnetic nanocrystals, magnetic properties, nanocrystal, superlattices, superparticle},
pubstate = {published},
tppubtype = {article}
}
Porous superstructures are characterized by a large surface area and efficient molecular transport. Although methods aimed at generating porous superstructures from nanocrystals exist, current state-of-the-art strategies are limited to single-component nanocrystal dispersions. More importantly, such processes afford little control over the size and shape of the pores. Here, we present a new strategy for the nanofabrication of porous magneto-fluorescent nanocrystal superparticles that are well controlled in size and shape. We synthesize these composite superparticles by confining semiconductor and superparamagnetic nanocrystals within oil-in-water droplets generated using microfluidics. The rapid densification of these droplets yields spherical, monodisperse, and porous nanocrystal superparticles. Molecular simulations reveal that the formation of pores throughout the superparticles is linked to repulsion between nanocrystals of different compositions, leading to phase separation during self-assembly. We confirm the presence of nanocrystal phase separation at the single superparticle level by analyzing the changes in the optical and photonic properties of the superstructures as a function of nanocrystal composition. This excellent agreement between experiments and simulations allows us to develop a theory that predicts superparticle porosity from experimentally tunable physical parameters, such as nanocrystal size ratio, stoichiometry, and droplet densification rate. Our combined theoretical, computational, and experimental findings provide a blueprint for designing porous, multifunctional superparticles with immediate applications in catalytic, electrochemical, sensing, and cargo delivery applications.

Ning, Yifan; Yang, Shengsong; Yang, Dai-Bei; Cai, Yi-Yu; Xu, Jun; Li, Ruipeng; Zhang, Yugang; Kagan, Cherie R.; Saven, Jeffery G.; Murray, Christopher B.
Dynamic Nanocrystal Superlattices with Thermally Triggerable Lubricating Ligands Journal Article
In: Journal of the American Chemical Society, vol. 146, no. 6, pp. 3785-3795, 2024.
@article{Ning2024,
title = {Dynamic Nanocrystal Superlattices with Thermally Triggerable Lubricating Ligands},
author = {Yifan Ning and Shengsong Yang and Dai-Bei Yang and Yi-Yu Cai and Jun Xu and Ruipeng Li and Yugang Zhang and Cherie R. Kagan and Jeffery G. Saven and Christopher B. Murray},
url = {https://pubs-acs-org.proxy.library.upenn.edu/doi/full/10.1021/jacs.3c10706},
doi = {10.1021/jacs.3c10706},
year = {2024},
date = {2024-01-31},
urldate = {2024-01-31},
journal = {Journal of the American Chemical Society},
volume = {146},
number = {6},
pages = {3785-3795},
abstract = {The size-dependent and collective physical properties of nanocrystals (NCs) and their self-assembled superlattices (SLs) enable the study of mesoscale phenomena and the design of metamaterials for a broad range of applications. However, the limited mobility of NC building blocks in dried NCSLs often hampers the potential for employing postdeposition methods to produce high-quality NCSLs. In this study, we present tailored promesogenic ligands that exhibit a lubricating property akin to thermotropic liquid crystals. The lubricating ability of ligands is thermally triggerable, allowing the dry solid NC aggregates deposited on the substrates with poor ordering to be transformed into NCSLs with high crystallinity and preferred orientations. The interplay between the dynamic behavior of NCSLs and the molecular structure of the ligands is elucidated through a comprehensive analysis of their lubricating efficacy using both experimental and simulation approaches. Coarse-grained molecular dynamic modeling suggests that a shielding layer from mesogens prevents the interdigitation of ligand tails, facilitating the sliding between outer shells and consequently enhancing the mobility of NC building blocks. The dynamic organization of NCSLs can also be triggered with high spatial resolution by laser illumination. The principles, kinetics, and utility of lubricating ligands could be generalized to unlock stimuli-responsive metamaterials from NCSLs and contribute to the fabrication of NCSLs.},
keywords = {ligands, nanocrystal, superlattices},
pubstate = {published},
tppubtype = {article}
}
The size-dependent and collective physical properties of nanocrystals (NCs) and their self-assembled superlattices (SLs) enable the study of mesoscale phenomena and the design of metamaterials for a broad range of applications. However, the limited mobility of NC building blocks in dried NCSLs often hampers the potential for employing postdeposition methods to produce high-quality NCSLs. In this study, we present tailored promesogenic ligands that exhibit a lubricating property akin to thermotropic liquid crystals. The lubricating ability of ligands is thermally triggerable, allowing the dry solid NC aggregates deposited on the substrates with poor ordering to be transformed into NCSLs with high crystallinity and preferred orientations. The interplay between the dynamic behavior of NCSLs and the molecular structure of the ligands is elucidated through a comprehensive analysis of their lubricating efficacy using both experimental and simulation approaches. Coarse-grained molecular dynamic modeling suggests that a shielding layer from mesogens prevents the interdigitation of ligand tails, facilitating the sliding between outer shells and consequently enhancing the mobility of NC building blocks. The dynamic organization of NCSLs can also be triggered with high spatial resolution by laser illumination. The principles, kinetics, and utility of lubricating ligands could be generalized to unlock stimuli-responsive metamaterials from NCSLs and contribute to the fabrication of NCSLs.
2015

Paik, Taejong; Diroll, Benjamin T.; Kagan, Cherie R.; Murray, Christopher B.
Binary and Ternary Superlattices Self-Assembled from Colloidal Nanodisks and Nanorods Journal Article
In: Journal of the American Chemical Society, vol. 137, no. 20, pp. 6662–6669, 2015.
@article{Paik2015,
title = {Binary and Ternary Superlattices Self-Assembled from Colloidal Nanodisks and Nanorods},
author = {Taejong Paik and Benjamin T. Diroll and Cherie R. Kagan and Christopher B. Murray},
url = {https://pubs.acs.org/doi/abs/10.1021/jacs.5b03234},
doi = {10.1021/jacs.5b03234},
year = {2015},
date = {2015-04-30},
journal = {Journal of the American Chemical Society},
volume = {137},
number = {20},
pages = {6662–6669},
abstract = {Self-assembly of multicomponent anisotropic nanocrystals with controlled orientation and spatial distribution allows the design of novel metamaterials with unique shape- and orientation-dependent collective properties. Although many phases of binary structures are theoretically proposed, the examples of multicomponent assemblies, which are experimentally realized with colloidal anisotropic nanocrystals, are still limited. In this report, we demonstrate the formation of binary and ternary superlattices from colloidal two-dimensional LaF3 nanodisks and one-dimensional CdSe/CdS nanorods via liquid interfacial assembly. The colloidal nanodisks and nanorods are coassembled into AB-, AB2-, and AB6-type binary arrays determined by their relative size ratio and concentration to maximize their packing density. The position and orientation of anisotropic nanocrystal building blocks are tightly controlled in the self-assembled binary and ternary lattices. The macroscopic orientation of the superlattices is further tuned by changing the liquid subphase used for self-assembly, resulting in the formation of lamellar-type binary liquid crystalline superlattices. In addition, we demonstrate a novel ternary superlattice self-assembled from two different sizes of nanodisks and a nanorod, which offers the unique opportunity to design multifunctional metamaterials.},
keywords = {colloids, liquid crystals, nanodisks, nanorods, self-assembly, superlattices},
pubstate = {published},
tppubtype = {article}
}
Self-assembly of multicomponent anisotropic nanocrystals with controlled orientation and spatial distribution allows the design of novel metamaterials with unique shape- and orientation-dependent collective properties. Although many phases of binary structures are theoretically proposed, the examples of multicomponent assemblies, which are experimentally realized with colloidal anisotropic nanocrystals, are still limited. In this report, we demonstrate the formation of binary and ternary superlattices from colloidal two-dimensional LaF3 nanodisks and one-dimensional CdSe/CdS nanorods via liquid interfacial assembly. The colloidal nanodisks and nanorods are coassembled into AB-, AB2-, and AB6-type binary arrays determined by their relative size ratio and concentration to maximize their packing density. The position and orientation of anisotropic nanocrystal building blocks are tightly controlled in the self-assembled binary and ternary lattices. The macroscopic orientation of the superlattices is further tuned by changing the liquid subphase used for self-assembly, resulting in the formation of lamellar-type binary liquid crystalline superlattices. In addition, we demonstrate a novel ternary superlattice self-assembled from two different sizes of nanodisks and a nanorod, which offers the unique opportunity to design multifunctional metamaterials.

Gaulding, E. Ashley; Diroll, Benjamin T.; Goodwin, E. D.; Vrtis, Zachary J.; Kagan, Cherie R.; Murray, Christopher B.
Deposition of Wafer-Scale Single-Component and Binary Nanocrystal Superlattice Thin Films Via Dip-Coating Journal Article
In: Advanced Materials, vol. 27, iss. 18, pp. 2846-2851, 2015.
@article{Gaulding2015,
title = {Deposition of Wafer-Scale Single-Component and Binary Nanocrystal Superlattice Thin Films Via Dip-Coating},
author = {E. Ashley Gaulding and Benjamin T. Diroll and E. D. Goodwin and Zachary J. Vrtis and Cherie R. Kagan and Christopher B. Murray},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201405575},
doi = {10.1002/adma.201405575},
year = {2015},
date = {2015-03-27},
journal = {Advanced Materials},
volume = {27},
issue = {18},
pages = {2846-2851},
abstract = {Single-component and binary nanocrystal superlattices are assembled over wafer-scale areas using the dip-coating method. A series of measurements are performed to confirm superlattice assembly. This study demonstrates the versatility of dip-coating in depositing a diverse set of nanocrystal materials and superlattice structures, while combining large-area deposition with nanoscale control.},
keywords = {nanocrystal, superlattices, thin films},
pubstate = {published},
tppubtype = {article}
}
Single-component and binary nanocrystal superlattices are assembled over wafer-scale areas using the dip-coating method. A series of measurements are performed to confirm superlattice assembly. This study demonstrates the versatility of dip-coating in depositing a diverse set of nanocrystal materials and superlattice structures, while combining large-area deposition with nanoscale control.

Diroll, Benjamin T.; Greybush, Nicholas J.; Kagan, Cherie R.; Murray, Christopher B.
Smectic Nanorod Superlattices Assembled on Liquid Subphases: Structure, Orientation, Defects, and Optical Polarization Journal Article
In: Chemistry of Materials, vol. 27, iss. 8, pp. 2998–3008, 2015.
@article{Diroll2015,
title = {Smectic Nanorod Superlattices Assembled on Liquid Subphases: Structure, Orientation, Defects, and Optical Polarization},
author = {Benjamin T. Diroll and Nicholas J. Greybush and Cherie R. Kagan and Christopher B. Murray},
url = {https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.5b00355},
doi = {10.1021/acs.chemmater.5b00355},
year = {2015},
date = {2015-03-10},
urldate = {2015-03-10},
journal = {Chemistry of Materials},
volume = {27},
issue = {8},
pages = {2998–3008},
abstract = {Directing the orientation of anisotropic nanocrystal assemblies is important for harnessing the shape-dependent properties of nanocrystal solids in devices. We control the orientation of smectic B superlattices of CdSe/CdS dot-in-rod nanocrystals through assembly on different polar interfaces and quantify the superlattice orientation through correlated small- and wide-angle grazing-incidence diffraction. Small-angle scattering is used to determine the phase of the nanorod superlattices and their preferential growth directions from the subphase. Wide-angle diffraction is used to quantify the orientations of nanorods within the superlattices and with respect to the substrate. Not only are the nanorod long axes aligned within the structures, but truncation of the short axes also coaligns the crystal axes of the nanorods with the zone axes in assembled smectic B crystals. Three dimensional orientational alignment of nanocrystals in superlattices is highly desirable in device applications. Depending on the subphase used for self-assembly, the films range from nearly quantitative vertical to horizontal alignment. Controlling for other variables, we find that the surface tension of the subphase is strongly correlated with the orientational ordering of the nanorod superlattices. The microstructure of nanorod superlattices shows many classic defects of atomic and liquid crystalline systems. The nature of defect structures supports a mechanism of nuclei formation on the subphase–solvent interface rather than in solution. Last, we demonstrate the relationship between optical absorption polarization and superlattice structure using correlated optical spectroscopy and electron microscopy.},
keywords = {defects, liquid crystals, nanorods, optical properties, self-assembly, superlattices},
pubstate = {published},
tppubtype = {article}
}
Directing the orientation of anisotropic nanocrystal assemblies is important for harnessing the shape-dependent properties of nanocrystal solids in devices. We control the orientation of smectic B superlattices of CdSe/CdS dot-in-rod nanocrystals through assembly on different polar interfaces and quantify the superlattice orientation through correlated small- and wide-angle grazing-incidence diffraction. Small-angle scattering is used to determine the phase of the nanorod superlattices and their preferential growth directions from the subphase. Wide-angle diffraction is used to quantify the orientations of nanorods within the superlattices and with respect to the substrate. Not only are the nanorod long axes aligned within the structures, but truncation of the short axes also coaligns the crystal axes of the nanorods with the zone axes in assembled smectic B crystals. Three dimensional orientational alignment of nanocrystals in superlattices is highly desirable in device applications. Depending on the subphase used for self-assembly, the films range from nearly quantitative vertical to horizontal alignment. Controlling for other variables, we find that the surface tension of the subphase is strongly correlated with the orientational ordering of the nanorod superlattices. The microstructure of nanorod superlattices shows many classic defects of atomic and liquid crystalline systems. The nature of defect structures supports a mechanism of nuclei formation on the subphase–solvent interface rather than in solution. Last, we demonstrate the relationship between optical absorption polarization and superlattice structure using correlated optical spectroscopy and electron microscopy.
2014

Diroll, Benjamin T.; Doan-Nguyen, Vicky V. T.; Cargnello, Matteo; Gaulding, E. Ashley; Kagan, Cherie R.; Murray, Christopher B.
X-ray Mapping of Nanoparticle Superlattice Thin Films Journal Article
In: ACS Nano, vol. 8, no. 12, pp. 12843–12850, 2014.
@article{Diroll2014,
title = {X-ray Mapping of Nanoparticle Superlattice Thin Films},
author = {Benjamin T. Diroll and Vicky V. T. Doan-Nguyen and Matteo Cargnello and E. Ashley Gaulding and Cherie R. Kagan and Christopher B. Murray},
url = {https://pubs.acs.org/doi/full/10.1021/nn5062832},
doi = {10.1021/nn5062832},
year = {2014},
date = {2014-12-05},
urldate = {2014-12-05},
journal = {ACS Nano},
volume = {8},
number = {12},
pages = {12843–12850},
abstract = {We combine grazing-incidence and transmission small-angle X-ray diffraction with electron microscopy studies to characterize the structure of nanoparticle films with long-range order. Transmission diffraction is used to collect in-plane diffraction data from single grains and locally aligned nanoparticle superlattice films. Systematic mapping of samples can be achieved by translating the sample in front of the X-ray beam with a spot size selected to be on the order of superlattice grain features. This allows a statistical determination of superlattice grain size and size distribution over much larger areas than typically accessible with electron microscopy. Transmission X-ray measurements enables spatial mapping of the grain size, orientation, uniformity, strain, or crystal projections and polymorphs. We expand this methodology to binary nanoparticle superlattice and nanorod superlattice films. This study provides a framework for characterization of nanoparticle superlattices over large areas which complements or expands microstructure information from real-space imaging.},
keywords = {nanocrystal, nanoparticle assembly, superlattices, thin films},
pubstate = {published},
tppubtype = {article}
}
We combine grazing-incidence and transmission small-angle X-ray diffraction with electron microscopy studies to characterize the structure of nanoparticle films with long-range order. Transmission diffraction is used to collect in-plane diffraction data from single grains and locally aligned nanoparticle superlattice films. Systematic mapping of samples can be achieved by translating the sample in front of the X-ray beam with a spot size selected to be on the order of superlattice grain features. This allows a statistical determination of superlattice grain size and size distribution over much larger areas than typically accessible with electron microscopy. Transmission X-ray measurements enables spatial mapping of the grain size, orientation, uniformity, strain, or crystal projections and polymorphs. We expand this methodology to binary nanoparticle superlattice and nanorod superlattice films. This study provides a framework for characterization of nanoparticle superlattices over large areas which complements or expands microstructure information from real-space imaging.
2014
“Designing High-Performance PbS and PbSe Nanocrystal Electronic Devices through Stepwise, Post-Synthesis, Colloidal Atomic Layer Deposition,” Soong Ju Oh, Nathaniel E. Berry, Ji-Hyuk Choi, E. Ashley Gaulding, Hangfei Lin, Taejong Paik, Benjamin. T. Diroll, Shin Muramoto, Christopher B. Murray, and Cherie R. Kagan NANO Letters, 14 (3) 1559-1566 (2014)
“Air-Stable, Nanostructured Electronic and Plasmonic Materials from Solution-Processable, Silver Nanocrystal Building Blocks,” Aaron T. Fafarman, Sung-Hoon Hong, Soong Ju Oh, Humeyra Caglayan, Xingchen Ye, Benjamin T. Diroll, Nader Engheta, Christopher B. Murray, and Cherie R. Kagan ACS NANO, 8 (3) 2746-2754 (2014)
“Solution-Processed Phase-Change VO2 Metamaterials from Colloidal Vanadium Oxide (VOx) Nanocrystals,” Taejong Paik, Sung-Hoon Hong, E. Ashley Gaulding, Humeyra Caglayan, Thomas R. Gordon, Nader Engheta, Cherie R. Kagan, and Christopher B. Murray ACS NANO, 8 (1) 797-806 (2014)
2013
“Solution-Based Stoichiometric Control over Charge Transport in Nanocrystalline CdSe Devices,” David K. Kim, Aaron T. Fafarman, Benjamin T. Diroll, Silvia H Chan, Thomas R. Gordon, Christopher B. Murray, and Cherie R. Kagan ACS NANO, 7 (10) 8760-8770 (2013)
“Crystallographic anisotropy of the resistivity size effect in single crystal tungsten nanowires,” Dooho Choi, Matthew Moneck, Xuan Liu, Soong Ju Oh, Cherie R. Kagan, Kevin R. Coffey, & Katayun Barmak Scientific Reports, 3 (2591) 1-4 (2013)
“In-situ Repair of High-Performance, Flexible Nanocrystal Electronics for Large-Area Fabrication and Operation in Air,” Ji-Hyuk Choi, Soong Ju Oh, Yuming Lai, David K. Kim, Tianshuo Zhao, Aaron T. Fafarman, Benjamin T. Diroll, Christopher B. Murray, and Cherie R. Kagan ACS Nano, 7 (9) 8275-8283 (2013)
“Near-Infrared Metatronic Nanocircuits by Design,” Humeyra Caglayan*, Sung-Hoon Hong*, Brian Edwards, Cherie R. Kagan, and Nader Engheta Physical Review Letters, 111 073904 (2013)
* Indicates equal contribution
“Plasmonic Enhancement of Nanophosphor Upconversion Luminescence in Au Nanohole Arrays,” Marjan Saboktakin, Xingchen Ye, Uday K. Chettiar, Nader Engheta , Christopher B. Murray, and Cherie R. Kagan ACS Nano, 7 (8) 7186-7192 (2013)
“Competition of shape and interaction patchiness for self-assembling nanoplates,” Xingchen Ye, Jun Chen, Michael Engel, Jaime A. Millan, Wenbin Li, Liang Qi, Guozhong Xing, Joshua E. Collins, Cherie R. Kagan, Ju Li, Sharon C. Glotzer & Christopher B. Murray Nature Chemistry, 5 466-473 (2013)
“Stoichiometric Control of Lead Chalcogenide Nanocrystal Solids to Enhance Their Electronic and Optoelectronic Device Performance,” Soong Ju Oh, Nathaniel E. Berry, Ji-Hyuk Choi, E. Ashley Gaulding, Taejong Paik, Sung-Hoon Hong, Christopher B. Murray, and Cherie R. Kagan ACS Nano, 7 (3) 2413-2421 (2013)
“Engineering Catalytic Contacts and Thermal Stability: Gold/Iron Oxide Binary Nanocrystal Superlattices for CO Oxidation,” Yijin Kang, Xingchen Ye, Jun Chen, Liang Qi, Rosa E. Diaz, Vicky Doan-Nguyen, Guozhong Xing, Cherie R. Kagan, Ju Li, Raymond J. Gorte, Eric A. Stach, and Christopher B. Murray JACS, 135 4 1499-1505 (2013)
“Bistable Magnetoresistance Switching in Exchange-Coupled CoFe2O4-Fe3O4 Binary Nanocrystal Superlattices by Self-Assembly and Thermal Annealing,” Jun Chen, Xingchen Ye, Soong Ju Oh, James M. Kikkawa, Cherie R. Kagan, and Christopher B. Murray ACS Nano, 7(2) 1478-1486 (2013)
“Chemically Tailored Dielectric-to-Metal Transition for the Design of Metamaterials from Nanoimprinted Colloidal Nanocrystals,” Aaron T. Fafarman*, Sung-Hoon Hong*, Humeyra Caglayan, Xingchen Ye, Benjamin T. Diroll, Taejong Paik, Nader Engheta, Christopher B. Murray & Cherie R. Kagan Nano Letters, 13 (2) 350-357 (2013)
*=Equal Contributors
2012
“Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors,” David K. Kim*, Yuming Lai*, Benjamin T. Diroll, Christopher B. Murray & Cherie R. Kagan Nature Communications, 3 (1216) 1-6 (2012)
*=Equal Contributors
“The State of Nanoparticle-Based Nanoscience and Biotechnology: Progress, Promises, and Challenges,” Beatriz Pelaz, Sarah Jaber, Dorleta Jimenez de Aberasturi, Verena Wulf, Takuzo Aida, Jesus M. de la Fuente, Jochen Feldmann, Hermann E. Gaub, Lee Josephson, Cherie R. Kagan, Nicholas A. Kotov, Luis M. Liz-Marzan, Hedi Mattoussi, Paul Mulvaney, Christopher B. Murray, Andrey L. Rogach, Paul S. Weiss, Itamar Willner, and Wolfgang J. Parak, ACS Nano, 6 (10) 8468-8483 (2012)
“Metal Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” Marjan Saboktakin, Xingchen Ye, Soong Ju Oh, Sung-Hoon Hong, Aaron T. Fafarman, Uday K. Chettiar, Nader Engheta, Christopher B. Murray, and Cherie R. Kagan, ACS Nano, 6 (10) 8758-8766 (2012)
“Bandlike Transport in Strongly Coupled and Doped Quantum Dot Solids: A Route to High-Performance Thin-Film Electronics,” Ji-Hyuk Choi, Aaron T. Fafarman, Soong Ju Oh, Dong-Kyun Ko, David K. Kim, Benjamin T. Diroll, Shin Muramoto, J. Greg Gillen, Christopher B. Murray, and Cherie R. Kagan, Nano Letters, 12 (5) 2631-2638 (2012)
“Remote Doping and Schottky Barrier Formation in Strongly Quantum Confined Single PbSe Nanowire Field-Effect Transistors,” Soong Ju Oh, David K. Kim, and Cherie. R. Kagan, ACS Nano, 6 (5) 4328-4334 (2012)
“Wrinkles and deep folds as photonic structures in photovoltaics,” Jong Bok Kim, Pilnam Kim, Nicolas C. Pgard, Soong Ju Oh, Cherie R. Kagan, Jason W. Fleischer, Howard A. Stone and Yueh-Lin Loo, Nature Photonics, 6 327-332 (2012)
“An Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through the Use of Aromatic Additives,” Xingchen Ye, Linghua Jin, Humeyra Caglayan, Jun Chen, Guozhong Xing, Chen Zheng, Vicky Doan-Nguyen, Yijin Kang, Nader Engheta, Cherie R. Kagan, and Christopher B. Murray, ACS Nano, 6 2804-2817 (2012)
“Molecular Monolayers as Semiconducting Channels in Field Effect Transistors,” Cherie R. Kagan, Topics in Current Chemistry, 312 213-237, (2012)
2011
“Flexible, Low-Voltage, and Low-Hysteresis PbSe Nanowire Field-Effect Transistors,” David K. Kim, Yuming Lai, Tarun R. Vemulkar, and Cherie R. Kagan, ACS Nano, 5 (12) 10074-10083, (2011)
“Thiocyanate-capped PbS nanocubes: ambipolar transport enables quantum dot-based circuits on a flexible substrate,” Weon-kyu Koh , Sangameshwar R Saudari , Aaron T. Fafarman , Cherie R. Kagan , and Christopher B. Murray, Nano Letters, 11 (11) 4764-4767, (2011)
“Near-Infrared Absorption of Monodisperse Silver Telluride (Ag2Te) Nanocrystals and Photoconductive Response of Their Self-Assembled Superlattices,” Yu-Wen Liu, Dong-Kyun Ko, Soong Ju Oh, Thomas R. Gordon, Vicky Doan-Nguyen, Taejong Paik, Yijin Kang, Xingchen Ye, Linghua Jin, Cherie R. Kagan, and Christopher B. Murray, ACS Chemistry of Materials, 23 (21) 4657-4659, (2011)
“Diketopyrrolopyrrole-based p-bridged Donor-Acceptor Polymer for Photovoltaic Applications,” Wenting Li, Taegweon Lee, Soong Ju Oh, and Cherie R. Kagan, ACS Applied Materials and Interfaces, 3 (10) 3874-3883 (2011)
“Flexible Organic Electronics for Use in Neural Sensing,” Hank Bink*, Yuming Lai*, Sangamweshwar Rao Saudari, Brian Helfer, Jonathan Viventi, Jan Van der Spiegel, Brian Litt, Cherie Kagan, IEEE EMBC 2011 5400-5403 (2011)
* = Equal Contributors
“Thiocyanate Capped Nanocrystal Colloids: A Vibrational Reporter of Surface Chemistry and a Solution-based Route to Enhanced Coupling in Nanocrystal Solids,” Aaron T. Fafarman, Weon-kyu Koh, Benjamin T. Diroll, David K. Kim, Dong-Kyun Ko, Soong Ju Oh, Xingchen Ye, Vicky Doan-Nguyen, Michael R. Crump, Danielle C. Reifsnyder, Christopher B. Murray, and Cherie R. Kagan, Journal of the American Chemical Society, 133 (39), 15753-15761, (2011)
“Ambipolar and Unipolar PbSe Nanowire Field-Effect Transistors,” David K. Kim, Tarun R. Vemulkar, Soong-Ju Oh, Weon-kyu Koh, Christopher B. Murray and Cherie R. Kagan, ACS Nano, 5 (4), 3230-3236, (2011)
“Multiscale Periodic Assembly of Striped Nanocrystal Superlattice Films on a Liquid Surface,” Angang Dong, Jun Chen, Soong Ju Oh, Weon-kyu Koh, Faxian Xiu, Xingchen Ye, Dong-Kyun Ko, Kang L. Wang, Cherie R. Kagan, and Christopher B. Murray, Nano Letters, 11 (2), 841-846, (2011)
2010
“Comparison of the Energy-level Alignment of Thiolate- and Carbodithiolate-Bound Self-Assembled Monolayers on Gold,” Philip Schulz, Christopher D. Zangmeister, Yi-Lei Zhao, Paul R. Frail, Sangameshwar R. Saudari, Carlos A. Gonzalez, Cherie R. Kagan, Matthias Wuttig, and Roger D. van Zee, Journal of Physical Chemistry C, 114 (48), 20843-20851, (2010)
“Device Configurations for Ambipolar Transport in Flexible, Pentacene Transistors,” Sangameshwar Rao Saudari, Yu Jen Lin, Yuming Lai and Cherie R. Kagan, Advanced Materials, 44, 5063-5068, (2010)
“Small-Molecule Thiophene-C60 Dyads As Compatibilizers in Inverted Polymer Solar Cells,” Jong Bok Kim, Kathryn Allen, Soong Ju Oh, Stephanie Lee, Michael F. Toney, Youn Sang Kim, Cherie R. Kagan, Colin Nuckolls, and Yueh-Lin Loo, Chemistry of Materials, 22 (20), pp 5762-5773 (2010)
2009
“Ambipolar transport in solution-deposited pentacene transistors enhanced by molecular engineering of device contacts,” Sangameshwar Rao Saudari, Paul R. Frail, Cherie R. Kagan , Appl. Phys. Lett, 95, 023301 (2009)
2007
“Chemically Assisted Directed Assembly of Carbon Nanotubes for the Fabrication of Large-Scale Device Arrays,” G. S. Tulevski, J. Hannon, A. Afzali, Z. Chen, Ph. Avouris, C. R. Kagan, J. American Chemical Society, 129 (39), 11964 (2007)
“Alignment, Electronic Properties, Doping, and On-Chip Growth of Colloidal PbSe Nanowires,” D. V. Talapin, C. T. Black, C. R. Kagan, E. V. Shevchenko, A. Afzali, C. B. Murray, J. Phys. Chem. C, 111 (35), 13244 (2007)
“Synergistic Effects in Binary Nanocrystal Superlattices: Enhanced p-Type Conductivity in Self-Assembled PbTe/Ag2Te Thin Films,” J. J. Urban, D. V. Talapin, E. V. Shevchenko, C. R. Kagan, C. B. Murray, Nature Materials, 6 (2), 115 (2007).
“Molecular Assemblies: Briding the Gap to Form Molecular Junctions,” C. R. Kagan, C. Lin, in Multifunctional Conducting Molecular Materials, eds. G. Saito, F. Wudl, R. C. Haddon, K. Tanigaki, T. Enoki, H. E. Katz, M. Maesato, Royal Society of Chemistry, London 306, 248, (2007).
2006
“The Role of Chemical Contacts in Molecular Conductance,” N. D. Lang, C. R. Kagan, Nano Letters, 6, 2955 (2006).
“Enforced One-Dimensional Photoconductivity in Core-Cladding Hexabenzocorenenes,” Y. S. Cohen, S. Xiao, C. Nuckolls, C. R. Kagan, Nano Letters, 6, 2838 (2006).
“Organic and Organic-Inorganic Hybrid Molecular Devices,” Proceedings of the 12th International Micromachine/Nanotech Symposium, 31 (2006).
“Device Scaling in Sub-100 nm Pentacene FETs,” G. S. Tulevski, A. Afzali, T. O Graham, C. Nuckolls, C. R. Kagan, Applied Physics Letters, 89, 183101 (2006).
“Chemical Complementarity in the Contacts for Nanoscale Organic Field-Effect Transistors,” G. S. Tulevski, Q. Miao, A. Afzali, T. O. Graham, C. R. Kagan, C. Nuckolls, Journal of the American Chemical Society, 128, 1788 (2006).
2005
“Self-assembly and Oligomerization of Alkyne-Terminated Molecules on Metal and Oxide Surfaces,” L. Vyklicky, A. Afzali, C. R. Kagan, Langmuir, 21, 11574 (2005).
“Operational and Environmental Stability of Pentacene Thin Film Transistors,” C. R. Kagan, A. Afzali, T. O. Graham, Applied Physics Letters, 86, 193505 (2005).
“N-Sulfinylcarbamate-Pentacene Adduct; a Novel Pentacene Precursor Soluble in Alcohols,” A. Afzali, C. R. Kagan, G. Traub, Synthetic Metals, 155, 490 (2005).
“Electrostatic Field and Partial Fermi Level Pinning at the Pentacene-SiO2 Interface,” L. Chen, R. Ludeke, X. Cui, A. G. Schrott, C. R. Kagan, L. E. Brus, Journal of Physical Chemistry B, 109, 1834 (2005).
2004
“Molecular Transport Junctions: An Introduction,” C. R. Kagan, M. A. Ratner, MRS Bulletin, edited by C. R. Kagan, M. A. Ratner, 29, 376 (2004).
“Direct Assembly of Organic Semiconductors on Gate Oxides,” G. S. Tulevski, Q. Miao, M. Fukuto, R. Abram, B. Ocko, R. Pindak, C. R. Kagan, C. Nuckolls, Journal of the American Chemical Society, 126, 15048 (2004).
“Understanding the Molecular Transistor,” P. Solomon, C. R. Kagan in Future Trends in Microelectronics: The Nano, the Giga, and the Ultra, edited by S. Luryi, J. Xu, A. Zaslavsky, Wiley, NY (2004), p.168.
2003
“Evaluations and Considerations for Self-Assembled Monolayer Field-Effect Transistors,” C. R. Kagan, A. Afzali, R. Martel, L. M. Gignac, P. M. Solomon, A. Schrott, B. Ek, Nano Letters, 3, 119 (2003).
“Layer-by-Layer Growth of Metal-Metal Bonded Supramolecular Thin Films and Its Use in the Fabrication of Lateral Nanoscale Devices,” C. Lin and C. R. Kagan, Journal of the American Chemical Society, 125, 336 (2003).
“Organic-Inorganic Thin Film Transistors,” D. B. Mitzi, C. R. Kagan in Thin Film Transistors, edited by C. R. Kagan, P. S. Andry, Marcell-Dekker, NY, (2003), p. 475.
“Charge Transport on the Nanoscale,” D. Adams, L. Brus, C. E. D. Chidsey, S. Creager, C. Creutz, C. R. Kagan, P. Kamat, M. Lieberman, S. Lindsay, R. A. Marcus, R. M. Metzger, M. E. Michel-Beyerle, J. R. Miller, M. D. Newton, D. R. Rolison, O. Sankey, K. S. Schanze, J. Yardley, X. Zhu, Journal of Physical Chemistry B, 107, 6668 (2003).
2002
“An efficient synthesis of symmetrical oligothiophenes: Synthesis and transport properties of a soluble sexithiophene derivative,” A. Afzali, T. L. Breen, C. R. Kagan, Chemistry of Materials, 14(4), 1742 (2002) .
2001
“Patterning Organic-Inorganic Thin-Film Transistors Using Microcontact Printed Templates,” C. R. Kagan, T. L Breen, L. L. Kosbar, Applied Physics Letters 79 (21), 3536 (2001).
“Organic-Inorganic Electronics,” D. B. Mitzi, K. Chondroudis, C. R. Kagan, IBM Journal of Research and Development, 45, 29 (2001).
“Colloidal Synthesis of Nanocrystals and Nanocrystal Superlattices,” C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. Betley, C. R. Kagan, IBM Journal of Research and Development, 45, 47 (2001).
2000
“Synthesis and Characterization of Monodisperse Nanocrystals and Close Packed Nanocrystal Assemblies,” C. B. Murray, C. R. Kagan, M. G. Bawendi, Annual Review of Materials Science 30, 545, (2000).
“Photoconductivity in CdSe Quantum Dot Solids,” C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, Physical Review B, 62, 2669 (2000).
1999
“Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors,” C. R. Kagan, D. B. Mitzi, C. D. Dimitrakopoulos, Science, 286, 945 (1999).
“Design, Structure, and Optical Properties of Organic-Inorganic Perovskites Containing an Oligothiophene Chromophore,” David B. Mitzi, Konstantinos Chondroudis, Cherie R. Kagan, Inorganic Chemistry 38, 6246 (1999).
“Charge Generation and Transport in CdSe Semiconductor Quantum Dot Solids,” C. A. Leatherdale, N. Y. Morgan, C. R. Kagan, S. A. Empedocles, M. G. Bawendi, M. A. Kastner, MRS Proceedings 571, 191 (1999).
1998
“Submicron Confocal Raman Imaging of Holograms in Multicomponent Photopolymers,” C. R. Kagan, T. D. Harris, A. L. Harris, and M. L. Schilling, Journal of Chemical Physics, 108, 6892 (1998).
1996
“Long Range Resonance Transfer of Electronic Excitations in Close Packed CdSe Quantum Dot Solids,” C. R. Kagan, C. B. Murray, and M. G. Bawendi, Physical Review B, 54, 8633 (1996).
“Electronic Energy Transfer in CdSe Quantum Dot Solids,” C. R. Kagan, C. B. Murray, M. Nirmal, M. G. Bawendi, Physical Review Letters, 76, 1517 (1996).
1995
“Self Organization of CdSe Nanocrystallites into Three Dimensional Quantum Dot Superlattices,” C. B. Murray, C. R. Kagan, and M. G. Bawendi, Science, 270, 1335 (1995).
“Synthesis, Structural Characterization, and Optical Spectroscopy of Close Packed CdSe Nanocrystallites,” C. R. Kagan, C. B. Murray, M. G. Bawendi, MRS Proceedings, 358, 219 (1995).
1993
“Solution Precipitation of CdSe Quantum Dots,” C. R. Kagan, M. J. Cima, MRS Proceedings, 283, 841 (1993).
1992
“Ion-Exchange Reactions of Potassium Brannerite, K0.8(V0.8Mo1.2)O6,” Peter K. Davies and Cherie R. Kagan, Solid State Ionics, 53-56, 546-552 (1992).
Books and Journals Edited
“Molecular Transport Junctions,” edited by C. R. Kagan, M. A. Ratner, MRS Bulletin, Materials Research Society, PA, (2004).
“Thin Film Transistors,” edited by C. R. Kagan, P. S. Andry, Marcell-Dekker, NY, (2003).