2023

logo, Taejong Paik ORCID; Greybush, Nicholas J.; Najmr, Stan; Woo, Ho Young; Hong, Seong Vin; Kim, Seung Hyeon; Lee, Jennifer D.; Kagan, Cherie R.; Murray, Christopher B.
Shape-controlled synthesis and self-assembly of highly uniform upconverting calcium fluoride nanocrystals Journal Article
In: Inorganic Chemistry Frontiers, vol. 11, pp. 278-285, 2023.
@article{logologo2023,
title = {Shape-controlled synthesis and self-assembly of highly uniform upconverting calcium fluoride nanocrystals},
author = {Taejong Paik ORCID logo and Nicholas J. Greybush and Stan Najmr and Ho Young Woo and Seong Vin Hong and Seung Hyeon Kim and Jennifer D. Lee and Cherie R. Kagan and Christopher B. Murray},
url = {https://pubs-rsc-org.proxy.library.upenn.edu/en/content/articlehtml/2023/qi/d3qi01864d},
doi = {10.1039/D3QI01864D},
year = {2023},
date = {2023-11-13},
journal = {Inorganic Chemistry Frontiers},
volume = {11},
pages = {278-285},
abstract = {Herein, the size- and shape-controlled synthesis of nearly-monodisperse, lanthanide-doped calcium fluoride (CaF2) nanocrystals (NCs) is reported. The sizes and shapes of CaF2 NCs are controlled by tailoring the reaction conditions, such as the concentration of lithium fluoride precursors, reaction time and temperature, and the procedure for adding the calcium trifluoroacetate precursors in the reaction mixture. Highly uniform CaF2 NCs are synthesized with several morphologies, such as nanospheres, truncated octahedra, nanoplates, and nanowires. The shape-controlled CaF2 NCs self-assemble into NC superlattices with long-range orientational and positional order forming crystalline and liquid crystalline structures. The near-infrared-to-visible upconversion luminescence properties are investigated by varying the types of dopants as well as the sizes and shapes of the CaF2 NCs.},
keywords = {nanoparticle assembly, self-assembly, synthesis, upconverting nanophosphors},
pubstate = {published},
tppubtype = {article}
}
Herein, the size- and shape-controlled synthesis of nearly-monodisperse, lanthanide-doped calcium fluoride (CaF2) nanocrystals (NCs) is reported. The sizes and shapes of CaF2 NCs are controlled by tailoring the reaction conditions, such as the concentration of lithium fluoride precursors, reaction time and temperature, and the procedure for adding the calcium trifluoroacetate precursors in the reaction mixture. Highly uniform CaF2 NCs are synthesized with several morphologies, such as nanospheres, truncated octahedra, nanoplates, and nanowires. The shape-controlled CaF2 NCs self-assemble into NC superlattices with long-range orientational and positional order forming crystalline and liquid crystalline structures. The near-infrared-to-visible upconversion luminescence properties are investigated by varying the types of dopants as well as the sizes and shapes of the CaF2 NCs.

Yang, Shengsong; LaCour, R. Allen; Cai, Yi-Yu; Xu, Jun; Rosen, Daniel J.; Zhang, Yugang; Kagan, Cherie R.; Glotzer, Sharon C.; Murray, Christopher B.
Self-Assembly of Atomically Aligned Nanoparticle Superlattices from Pt–Fe3O4 Heterodimer Nanoparticles Journal Article
In: Journal of the American Chemical Society, vol. 145, iss. 11, pp. 6280–6288, 2023.
@article{Yang2023,
title = {Self-Assembly of Atomically Aligned Nanoparticle Superlattices from Pt–Fe3O4 Heterodimer Nanoparticles},
author = {Shengsong Yang and R. Allen LaCour and Yi-Yu Cai and Jun Xu and Daniel J. Rosen and Yugang Zhang and Cherie R. Kagan and Sharon C. Glotzer and Christopher B. Murray},
url = {https://pubs.acs.org/doi/full/10.1021/jacs.2c12993},
doi = {10.1021/jacs.2c12993},
year = {2023},
date = {2023-03-13},
urldate = {2023-03-13},
journal = {Journal of the American Chemical Society},
volume = {145},
issue = {11},
pages = {6280–6288},
abstract = {Multicomponent nanoparticle superlattices (SLs) promise the integration of nanoparticles (NPs) with remarkable electronic, magnetic, and optical properties into a single structure. Here, we demonstrate that heterodimers consisting of two conjoined NPs can self-assemble into novel multicomponent SLs with a high degree of alignment between the atomic lattices of individual NPs, which has been theorized to lead to a wide variety of remarkable properties. Specifically, by using simulations and experiments, we show that heterodimers composed of larger Fe3O4 domains decorated with a Pt domain at one vertex can self-assemble into an SL with long-range atomic alignment between the Fe3O4 domains of different NPs across the SL. The SLs show an unanticipated decreased coercivity relative to nonassembled NPs. In situ scattering of the self-assembly reveals a two-stage mechanism of self-assembly: translational ordering between NPs develops before atomic alignment. Our experiments and simulation indicate that atomic alignment requires selective epitaxial growth of the smaller domain during heterodimer synthesis and specific size ratios of the heterodimer domains as opposed to specific chemical composition. This composition independence makes the self-assembly principles elucidated here applicable to the future preparation of multicomponent materials with fine structural control.},
keywords = {nanocrystal, nanoparticle assembly, self-assembly},
pubstate = {published},
tppubtype = {article}
}
Multicomponent nanoparticle superlattices (SLs) promise the integration of nanoparticles (NPs) with remarkable electronic, magnetic, and optical properties into a single structure. Here, we demonstrate that heterodimers consisting of two conjoined NPs can self-assemble into novel multicomponent SLs with a high degree of alignment between the atomic lattices of individual NPs, which has been theorized to lead to a wide variety of remarkable properties. Specifically, by using simulations and experiments, we show that heterodimers composed of larger Fe3O4 domains decorated with a Pt domain at one vertex can self-assemble into an SL with long-range atomic alignment between the Fe3O4 domains of different NPs across the SL. The SLs show an unanticipated decreased coercivity relative to nonassembled NPs. In situ scattering of the self-assembly reveals a two-stage mechanism of self-assembly: translational ordering between NPs develops before atomic alignment. Our experiments and simulation indicate that atomic alignment requires selective epitaxial growth of the smaller domain during heterodimer synthesis and specific size ratios of the heterodimer domains as opposed to specific chemical composition. This composition independence makes the self-assembly principles elucidated here applicable to the future preparation of multicomponent materials with fine structural control.
2022

Keller, Austin W.; Marino, Emanuele; An, Di; Neuhaus, Steven J.; Elbert, Katherine C.; Murray, Christopher B.; Kagan, Cherie R.
Sub-5 nm Anisotropic Pattern Transfer via Colloidal Lithography of a Self-Assembled GdF3 Nanocrystal Monolayer Journal Article
In: Nano Letters, vol. 22, iss. 5, pp. 1992–2000, 2022.
@article{Keller2022,
title = {Sub-5 nm Anisotropic Pattern Transfer via Colloidal Lithography of a Self-Assembled GdF3 Nanocrystal Monolayer},
author = {Austin W. Keller and Emanuele Marino and Di An and Steven J. Neuhaus and Katherine C. Elbert and Christopher B. Murray and Cherie R. Kagan},
url = {https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.1c04761},
doi = {10.1021/acs.nanolett.1c04761},
year = {2022},
date = {2022-02-28},
urldate = {2022-02-28},
journal = {Nano Letters},
volume = {22},
issue = {5},
pages = {1992–2000},
abstract = {Patterning materials with nanoscale features opens many research opportunities ranging from fundamental science to technological applications. However, current nanofabrication methods are ill-suited for sub-5 nm patterning and pattern transfer. We demonstrate the use of colloidal lithography to transfer an anisotropic pattern of discrete features into substrates with a critical dimension below 5 nm. The assembly of monodisperse, anisotropic nanocrystals (NCs) with a rhombic-plate morphology spaced by dendrimer ligands results in a well-ordered monolayer that serves as a 2D anisotropic hard mask pattern. This pattern is transferred into the underlying substrate using dry etching followed by removal of the NC mask. We exemplify this approach by fabricating an array of pillars with a rhombic cross-section and edge-to-edge spacing of 4.4 ± 1.1 nm. The fabrication approach enables broader access to patterning materials at the deep nanoscale by implementing innovative processes into well-established fabrication methods while minimizing process complexity.},
keywords = {lithography, manufacturing, nanocrystal, nanoparticle assembly, nanoscience, nanotechnology, patterning, self-assembly},
pubstate = {published},
tppubtype = {article}
}
Patterning materials with nanoscale features opens many research opportunities ranging from fundamental science to technological applications. However, current nanofabrication methods are ill-suited for sub-5 nm patterning and pattern transfer. We demonstrate the use of colloidal lithography to transfer an anisotropic pattern of discrete features into substrates with a critical dimension below 5 nm. The assembly of monodisperse, anisotropic nanocrystals (NCs) with a rhombic-plate morphology spaced by dendrimer ligands results in a well-ordered monolayer that serves as a 2D anisotropic hard mask pattern. This pattern is transferred into the underlying substrate using dry etching followed by removal of the NC mask. We exemplify this approach by fabricating an array of pillars with a rhombic cross-section and edge-to-edge spacing of 4.4 ± 1.1 nm. The fabrication approach enables broader access to patterning materials at the deep nanoscale by implementing innovative processes into well-established fabrication methods while minimizing process complexity.

Shulevitz, Henry J.; Huang, Tzu-Yung; Xu, Jun; Neuhaus, Steven; Patel, Raj N.; Lee C. Bassett, Cherie R. Kagan
Template-Assisted Self Assembly of Fluorescent Nanodiamonds for Scalable Quantum Technologies Journal Article
In: ACS Nano, vol. 16, iss. 2, pp. 1847–1856, 2022.
@article{Shulevitz2021,
title = {Template-Assisted Self Assembly of Fluorescent Nanodiamonds for Scalable Quantum Technologies},
author = {Henry J. Shulevitz and Tzu-Yung Huang and Jun Xu and Steven Neuhaus and Raj N. Patel and Lee C. Bassett, Cherie R. Kagan},
url = {https://pubs.acs.org/doi/10.1021/acsnano.1c09839
https://arxiv.org/abs/2111.14921},
year = {2022},
date = {2022-01-13},
urldate = {2022-01-13},
journal = {ACS Nano},
volume = {16},
issue = {2},
pages = {1847–1856},
abstract = {Milled nanodiamonds containing nitrogen-vacancy (NV) centers provide an excellent platform for sensing applications as they are optically robust, have nanoscale quantum sensitivity, and form colloidal dispersions which enable bottom-up assembly techniques for device integration. However, variations in their size, shape, and surface chemistry limit the ability to position individual nanodiamonds and statistically study properties that affect their optical and quantum characteristics. Here, we present a scalable strategy to form ordered arrays of nanodiamonds using capillary-driven, template-assisted self assembly. This method enables the precise spatial arrangement of isolated nanodiamonds with diameters below 50 nm across millimeter-scale areas. Measurements of over 200 assembled nanodiamonds yield a statistical understanding of their structural, optical, and quantum properties. The NV centers' spin and charge properties are uncorrelated with nanodiamond size, but rather are consistent with heterogeneity in their nanoscale environment. This flexible assembly method, together with improved understanding of the material, will enable the integration of nanodiamonds into future quantum photonic and electronic devices.},
keywords = {nanoparticle assembly, nanotechnology, quantum information science, self-assembly, TEM, templated assembly},
pubstate = {published},
tppubtype = {article}
}
Milled nanodiamonds containing nitrogen-vacancy (NV) centers provide an excellent platform for sensing applications as they are optically robust, have nanoscale quantum sensitivity, and form colloidal dispersions which enable bottom-up assembly techniques for device integration. However, variations in their size, shape, and surface chemistry limit the ability to position individual nanodiamonds and statistically study properties that affect their optical and quantum characteristics. Here, we present a scalable strategy to form ordered arrays of nanodiamonds using capillary-driven, template-assisted self assembly. This method enables the precise spatial arrangement of isolated nanodiamonds with diameters below 50 nm across millimeter-scale areas. Measurements of over 200 assembled nanodiamonds yield a statistical understanding of their structural, optical, and quantum properties. The NV centers' spin and charge properties are uncorrelated with nanodiamond size, but rather are consistent with heterogeneity in their nanoscale environment. This flexible assembly method, together with improved understanding of the material, will enable the integration of nanodiamonds into future quantum photonic and electronic devices.
2017

Paik, Taejong; Hongseok,; Fleury, Blaise; Hong, Sung-Hoon; Jo, Pil Sung; Wu, Yaoting; Oh, Soong-Ju; Cargnello, Matteo; Yang, Haoran; Murray, Christopher B.; Kagan, Cherie R.
Hierarchical Materials Design by Pattern Transfer Printing of Self-Assembled Binary Nanocrystal Superlattices Journal Article
In: Nano Letters, vol. 17, no. 3, pp. 1387–1394, 2017.
@article{Paik2017,
title = {Hierarchical Materials Design by Pattern Transfer Printing of Self-Assembled Binary Nanocrystal Superlattices},
author = {Taejong Paik and Hongseok and Blaise Fleury and Sung-Hoon Hong and Pil Sung Jo and Yaoting Wu and Soong-Ju Oh and Matteo Cargnello and Haoran Yang and Christopher B. Murray and Cherie R. Kagan},
url = {https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b04279},
doi = {abs/10.1021/acs.nanolett.6b04279},
year = {2017},
date = {2017-02-01},
journal = {Nano Letters},
volume = {17},
number = {3},
pages = {1387–1394},
abstract = {We demonstrate the fabrication of hierarchical materials by controlling the structure of highly ordered binary nanocrystal superlattices (BNSLs) on multiple length scales. Combinations of magnetic, plasmonic, semiconducting, and insulating colloidal nanocrystal (NC) building blocks are self-assembled into BNSL membranes via the liquid–interfacial assembly technique. Free-standing BNSL membranes are transferred onto topographically structured poly(dimethylsiloxane) molds via the Langmuir–Schaefer technique and then deposited in patterns onto substrates via transfer printing. BNSLs with different structural motifs are successfully patterned into various meso- and microstructures such as lines, circles, and even three-dimensional grids across large-area substrates. A combination of electron microscopy and grazing incidence small-angle X-ray scattering (GISAXS) measurements confirm the ordering of NC building blocks in meso- and micropatterned BNSLs. This technique demonstrates structural diversity in the design of hierarchical materials by assembling BNSLs from NC building blocks of different composition and size by patterning BNSLs into various size and shape superstructures of interest for a broad range of applications.},
keywords = {multifunctional nanomaterials, nanoparticle assembly, self-assembly, TEM},
pubstate = {published},
tppubtype = {article}
}
We demonstrate the fabrication of hierarchical materials by controlling the structure of highly ordered binary nanocrystal superlattices (BNSLs) on multiple length scales. Combinations of magnetic, plasmonic, semiconducting, and insulating colloidal nanocrystal (NC) building blocks are self-assembled into BNSL membranes via the liquid–interfacial assembly technique. Free-standing BNSL membranes are transferred onto topographically structured poly(dimethylsiloxane) molds via the Langmuir–Schaefer technique and then deposited in patterns onto substrates via transfer printing. BNSLs with different structural motifs are successfully patterned into various meso- and microstructures such as lines, circles, and even three-dimensional grids across large-area substrates. A combination of electron microscopy and grazing incidence small-angle X-ray scattering (GISAXS) measurements confirm the ordering of NC building blocks in meso- and micropatterned BNSLs. This technique demonstrates structural diversity in the design of hierarchical materials by assembling BNSLs from NC building blocks of different composition and size by patterning BNSLs into various size and shape superstructures of interest for a broad range of applications.
2015

Paik, Taejong; Diroll, Benjamin T.; Kagan, Cherie R.; Murray, Christopher B.
Binary and Ternary Superlattices Self-Assembled from Colloidal Nanodisks and Nanorods Journal Article
In: Journal of the American Chemical Society, vol. 137, no. 20, pp. 6662–6669, 2015.
@article{Paik2015,
title = {Binary and Ternary Superlattices Self-Assembled from Colloidal Nanodisks and Nanorods},
author = {Taejong Paik and Benjamin T. Diroll and Cherie R. Kagan and Christopher B. Murray},
url = {https://pubs.acs.org/doi/abs/10.1021/jacs.5b03234},
doi = {10.1021/jacs.5b03234},
year = {2015},
date = {2015-04-30},
journal = {Journal of the American Chemical Society},
volume = {137},
number = {20},
pages = {6662–6669},
abstract = {Self-assembly of multicomponent anisotropic nanocrystals with controlled orientation and spatial distribution allows the design of novel metamaterials with unique shape- and orientation-dependent collective properties. Although many phases of binary structures are theoretically proposed, the examples of multicomponent assemblies, which are experimentally realized with colloidal anisotropic nanocrystals, are still limited. In this report, we demonstrate the formation of binary and ternary superlattices from colloidal two-dimensional LaF3 nanodisks and one-dimensional CdSe/CdS nanorods via liquid interfacial assembly. The colloidal nanodisks and nanorods are coassembled into AB-, AB2-, and AB6-type binary arrays determined by their relative size ratio and concentration to maximize their packing density. The position and orientation of anisotropic nanocrystal building blocks are tightly controlled in the self-assembled binary and ternary lattices. The macroscopic orientation of the superlattices is further tuned by changing the liquid subphase used for self-assembly, resulting in the formation of lamellar-type binary liquid crystalline superlattices. In addition, we demonstrate a novel ternary superlattice self-assembled from two different sizes of nanodisks and a nanorod, which offers the unique opportunity to design multifunctional metamaterials.},
keywords = {colloids, liquid crystals, nanodisks, nanorods, self-assembly, superlattices},
pubstate = {published},
tppubtype = {article}
}
Self-assembly of multicomponent anisotropic nanocrystals with controlled orientation and spatial distribution allows the design of novel metamaterials with unique shape- and orientation-dependent collective properties. Although many phases of binary structures are theoretically proposed, the examples of multicomponent assemblies, which are experimentally realized with colloidal anisotropic nanocrystals, are still limited. In this report, we demonstrate the formation of binary and ternary superlattices from colloidal two-dimensional LaF3 nanodisks and one-dimensional CdSe/CdS nanorods via liquid interfacial assembly. The colloidal nanodisks and nanorods are coassembled into AB-, AB2-, and AB6-type binary arrays determined by their relative size ratio and concentration to maximize their packing density. The position and orientation of anisotropic nanocrystal building blocks are tightly controlled in the self-assembled binary and ternary lattices. The macroscopic orientation of the superlattices is further tuned by changing the liquid subphase used for self-assembly, resulting in the formation of lamellar-type binary liquid crystalline superlattices. In addition, we demonstrate a novel ternary superlattice self-assembled from two different sizes of nanodisks and a nanorod, which offers the unique opportunity to design multifunctional metamaterials.

Diroll, Benjamin T.; Greybush, Nicholas J.; Kagan, Cherie R.; Murray, Christopher B.
Smectic Nanorod Superlattices Assembled on Liquid Subphases: Structure, Orientation, Defects, and Optical Polarization Journal Article
In: Chemistry of Materials, vol. 27, iss. 8, pp. 2998–3008, 2015.
@article{Diroll2015,
title = {Smectic Nanorod Superlattices Assembled on Liquid Subphases: Structure, Orientation, Defects, and Optical Polarization},
author = {Benjamin T. Diroll and Nicholas J. Greybush and Cherie R. Kagan and Christopher B. Murray},
url = {https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.5b00355},
doi = {10.1021/acs.chemmater.5b00355},
year = {2015},
date = {2015-03-10},
urldate = {2015-03-10},
journal = {Chemistry of Materials},
volume = {27},
issue = {8},
pages = {2998–3008},
abstract = {Directing the orientation of anisotropic nanocrystal assemblies is important for harnessing the shape-dependent properties of nanocrystal solids in devices. We control the orientation of smectic B superlattices of CdSe/CdS dot-in-rod nanocrystals through assembly on different polar interfaces and quantify the superlattice orientation through correlated small- and wide-angle grazing-incidence diffraction. Small-angle scattering is used to determine the phase of the nanorod superlattices and their preferential growth directions from the subphase. Wide-angle diffraction is used to quantify the orientations of nanorods within the superlattices and with respect to the substrate. Not only are the nanorod long axes aligned within the structures, but truncation of the short axes also coaligns the crystal axes of the nanorods with the zone axes in assembled smectic B crystals. Three dimensional orientational alignment of nanocrystals in superlattices is highly desirable in device applications. Depending on the subphase used for self-assembly, the films range from nearly quantitative vertical to horizontal alignment. Controlling for other variables, we find that the surface tension of the subphase is strongly correlated with the orientational ordering of the nanorod superlattices. The microstructure of nanorod superlattices shows many classic defects of atomic and liquid crystalline systems. The nature of defect structures supports a mechanism of nuclei formation on the subphase–solvent interface rather than in solution. Last, we demonstrate the relationship between optical absorption polarization and superlattice structure using correlated optical spectroscopy and electron microscopy.},
keywords = {defects, liquid crystals, nanorods, optical properties, self-assembly, superlattices},
pubstate = {published},
tppubtype = {article}
}
Directing the orientation of anisotropic nanocrystal assemblies is important for harnessing the shape-dependent properties of nanocrystal solids in devices. We control the orientation of smectic B superlattices of CdSe/CdS dot-in-rod nanocrystals through assembly on different polar interfaces and quantify the superlattice orientation through correlated small- and wide-angle grazing-incidence diffraction. Small-angle scattering is used to determine the phase of the nanorod superlattices and their preferential growth directions from the subphase. Wide-angle diffraction is used to quantify the orientations of nanorods within the superlattices and with respect to the substrate. Not only are the nanorod long axes aligned within the structures, but truncation of the short axes also coaligns the crystal axes of the nanorods with the zone axes in assembled smectic B crystals. Three dimensional orientational alignment of nanocrystals in superlattices is highly desirable in device applications. Depending on the subphase used for self-assembly, the films range from nearly quantitative vertical to horizontal alignment. Controlling for other variables, we find that the surface tension of the subphase is strongly correlated with the orientational ordering of the nanorod superlattices. The microstructure of nanorod superlattices shows many classic defects of atomic and liquid crystalline systems. The nature of defect structures supports a mechanism of nuclei formation on the subphase–solvent interface rather than in solution. Last, we demonstrate the relationship between optical absorption polarization and superlattice structure using correlated optical spectroscopy and electron microscopy.
2014

Cativo, Ma. Helen M.; Kim, David K.; Riggleman, Robert A.; Yager, Kevin G.; Nonnenmann, Stephen S.; Chao, Huikuan; Black, Dawn A. BonnellvCharles T.; Kagan, Cherie R.; Park, So-Jung
Air–Liquid Interfacial Self-Assembly of Conjugated Block Copolymers into Ordered Nanowire Arrays Journal Article
In: ACS Nano, vol. 8, no. 12, pp. 12755–12762, 2014.
@article{Cativo2014,
title = {Air–Liquid Interfacial Self-Assembly of Conjugated Block Copolymers into Ordered Nanowire Arrays},
author = {Ma. Helen M. Cativo and David K. Kim and Robert A. Riggleman and Kevin G. Yager and Stephen S. Nonnenmann and Huikuan Chao and Dawn A. BonnellvCharles T. Black and Cherie R. Kagan and So-Jung Park},
url = {https://pubs.acs.org/doi/full/10.1021/nn505871b},
doi = {10.1021/nn505871b},
year = {2014},
date = {2014-12-08},
urldate = {2014-12-08},
journal = {ACS Nano},
volume = {8},
number = {12},
pages = {12755–12762},
abstract = {The ability to control the molecular packing and nanoscale morphology of conjugated polymers is important for many of their applications. Here, we report the fabrication of well-ordered nanoarrays of conjugated polymers, based on the self-assembly of conjugated block copolymers at the air–liquid interface. We demonstrate that the self-assembly of poly(3-hexylthiophene)-block-poly(ethylene glycol) (P3HT-b-PEG) at the air–water interface leads to large-area free-standing films of well-aligned P3HT nanowires. Block copolymers with high P3HT contents (82–91%) formed well-ordered nanoarrays at the interface. The fluidic nature of the interface, block copolymer architecture, and rigid nature of P3HT were necessary for the formation of well-ordered nanostructures. The free-standing films formed at the interface can be readily transferred to arbitrary solid substrates. The P3HT-b-PEG films are integrated in field-effect transistors and show orders of magnitude higher charge carrier mobility than spin-cast films, demonstrating that the air–liquid interfacial self-assembly is an effective thin film fabrication tool for conjugated block copolymers.},
keywords = {copolymers, interfaces, organic compounds, self-assembly, self-organization, thin films},
pubstate = {published},
tppubtype = {article}
}
The ability to control the molecular packing and nanoscale morphology of conjugated polymers is important for many of their applications. Here, we report the fabrication of well-ordered nanoarrays of conjugated polymers, based on the self-assembly of conjugated block copolymers at the air–liquid interface. We demonstrate that the self-assembly of poly(3-hexylthiophene)-block-poly(ethylene glycol) (P3HT-b-PEG) at the air–water interface leads to large-area free-standing films of well-aligned P3HT nanowires. Block copolymers with high P3HT contents (82–91%) formed well-ordered nanoarrays at the interface. The fluidic nature of the interface, block copolymer architecture, and rigid nature of P3HT were necessary for the formation of well-ordered nanostructures. The free-standing films formed at the interface can be readily transferred to arbitrary solid substrates. The P3HT-b-PEG films are integrated in field-effect transistors and show orders of magnitude higher charge carrier mobility than spin-cast films, demonstrating that the air–liquid interfacial self-assembly is an effective thin film fabrication tool for conjugated block copolymers.

Greybush, Nicholas J.; Saboktakin, Marjan; Ye, Xingchen; Giovampaola, Cristian Della; Oh, Soong Ju; Berry, Nathaniel E.; Engheta, Nader; Murray, Christopher B.; Kagan, Cherie R.
Plasmon-Enhanced Upconversion Luminescence in Single Nanophosphor–Nanorod Heterodimers Formed through Template-Assisted Self-Assembly Bachelor Thesis
2014.
@bachelorthesis{Greybush2014,
title = {Plasmon-Enhanced Upconversion Luminescence in Single Nanophosphor–Nanorod Heterodimers Formed through Template-Assisted Self-Assembly},
author = {Nicholas J. Greybush and Marjan Saboktakin and Xingchen Ye and Cristian Della Giovampaola and Soong Ju Oh and Nathaniel E. Berry and Nader Engheta and Christopher B. Murray and Cherie R. Kagan},
url = {https://pubs.acs.org/doi/full/10.1021/nn503675a},
doi = {10.1021/nn503675a},
year = {2014},
date = {2014-09-02},
journal = {ACS Nano},
volume = {8},
number = {9},
pages = {9482–9491},
abstract = {We demonstrate plasmonic enhancement of upconversion luminescence in individual nanocrystal heterodimers formed by template-assisted self-assembly. Lithographically defined, shape-selective templates were used to deterministically coassemble single Au nanorods in proximity to single hexagonal (β-phase) NaYF4:Yb3+,Er3+ upconversion nanophosphors. By tailoring the dimensions of the rods to spectrally tune their longitudinal surface plasmon resonance to match the 977 nm excitation wavelength of the phosphors and by spatially localizing the phosphors in the intense near-fields surrounding the rod tips, several-fold luminescence enhancements were achieved. The enhancement effects exhibited a strong dependence on the excitation light’s polarization relative to the rod axis. In addition, greater enhancement was observed at lower excitation power densities due to the nonlinear behavior of the upconversion process. The template-based coassembly scheme utilized here for plasmonic coupling offers a versatile platform for improving our understanding of optical interactions among individual chemically prepared nanocrystal components.},
keywords = {nanocrystal, optical properties, plasmonic, self-assembly, templated assembly, upconverting nanophosphors},
pubstate = {published},
tppubtype = {bachelorthesis}
}
We demonstrate plasmonic enhancement of upconversion luminescence in individual nanocrystal heterodimers formed by template-assisted self-assembly. Lithographically defined, shape-selective templates were used to deterministically coassemble single Au nanorods in proximity to single hexagonal (β-phase) NaYF4:Yb3+,Er3+ upconversion nanophosphors. By tailoring the dimensions of the rods to spectrally tune their longitudinal surface plasmon resonance to match the 977 nm excitation wavelength of the phosphors and by spatially localizing the phosphors in the intense near-fields surrounding the rod tips, several-fold luminescence enhancements were achieved. The enhancement effects exhibited a strong dependence on the excitation light’s polarization relative to the rod axis. In addition, greater enhancement was observed at lower excitation power densities due to the nonlinear behavior of the upconversion process. The template-based coassembly scheme utilized here for plasmonic coupling offers a versatile platform for improving our understanding of optical interactions among individual chemically prepared nanocrystal components.
2014
“Designing High-Performance PbS and PbSe Nanocrystal Electronic Devices through Stepwise, Post-Synthesis, Colloidal Atomic Layer Deposition,” Soong Ju Oh, Nathaniel E. Berry, Ji-Hyuk Choi, E. Ashley Gaulding, Hangfei Lin, Taejong Paik, Benjamin. T. Diroll, Shin Muramoto, Christopher B. Murray, and Cherie R. Kagan NANO Letters, 14 (3) 1559-1566 (2014)
“Air-Stable, Nanostructured Electronic and Plasmonic Materials from Solution-Processable, Silver Nanocrystal Building Blocks,” Aaron T. Fafarman, Sung-Hoon Hong, Soong Ju Oh, Humeyra Caglayan, Xingchen Ye, Benjamin T. Diroll, Nader Engheta, Christopher B. Murray, and Cherie R. Kagan ACS NANO, 8 (3) 2746-2754 (2014)
“Solution-Processed Phase-Change VO2 Metamaterials from Colloidal Vanadium Oxide (VOx) Nanocrystals,” Taejong Paik, Sung-Hoon Hong, E. Ashley Gaulding, Humeyra Caglayan, Thomas R. Gordon, Nader Engheta, Cherie R. Kagan, and Christopher B. Murray ACS NANO, 8 (1) 797-806 (2014)
2013
“Solution-Based Stoichiometric Control over Charge Transport in Nanocrystalline CdSe Devices,” David K. Kim, Aaron T. Fafarman, Benjamin T. Diroll, Silvia H Chan, Thomas R. Gordon, Christopher B. Murray, and Cherie R. Kagan ACS NANO, 7 (10) 8760-8770 (2013)
“Crystallographic anisotropy of the resistivity size effect in single crystal tungsten nanowires,” Dooho Choi, Matthew Moneck, Xuan Liu, Soong Ju Oh, Cherie R. Kagan, Kevin R. Coffey, & Katayun Barmak Scientific Reports, 3 (2591) 1-4 (2013)
“In-situ Repair of High-Performance, Flexible Nanocrystal Electronics for Large-Area Fabrication and Operation in Air,” Ji-Hyuk Choi, Soong Ju Oh, Yuming Lai, David K. Kim, Tianshuo Zhao, Aaron T. Fafarman, Benjamin T. Diroll, Christopher B. Murray, and Cherie R. Kagan ACS Nano, 7 (9) 8275-8283 (2013)
“Near-Infrared Metatronic Nanocircuits by Design,” Humeyra Caglayan*, Sung-Hoon Hong*, Brian Edwards, Cherie R. Kagan, and Nader Engheta Physical Review Letters, 111 073904 (2013)
* Indicates equal contribution
“Plasmonic Enhancement of Nanophosphor Upconversion Luminescence in Au Nanohole Arrays,” Marjan Saboktakin, Xingchen Ye, Uday K. Chettiar, Nader Engheta , Christopher B. Murray, and Cherie R. Kagan ACS Nano, 7 (8) 7186-7192 (2013)
“Competition of shape and interaction patchiness for self-assembling nanoplates,” Xingchen Ye, Jun Chen, Michael Engel, Jaime A. Millan, Wenbin Li, Liang Qi, Guozhong Xing, Joshua E. Collins, Cherie R. Kagan, Ju Li, Sharon C. Glotzer & Christopher B. Murray Nature Chemistry, 5 466-473 (2013)
“Stoichiometric Control of Lead Chalcogenide Nanocrystal Solids to Enhance Their Electronic and Optoelectronic Device Performance,” Soong Ju Oh, Nathaniel E. Berry, Ji-Hyuk Choi, E. Ashley Gaulding, Taejong Paik, Sung-Hoon Hong, Christopher B. Murray, and Cherie R. Kagan ACS Nano, 7 (3) 2413-2421 (2013)
“Engineering Catalytic Contacts and Thermal Stability: Gold/Iron Oxide Binary Nanocrystal Superlattices for CO Oxidation,” Yijin Kang, Xingchen Ye, Jun Chen, Liang Qi, Rosa E. Diaz, Vicky Doan-Nguyen, Guozhong Xing, Cherie R. Kagan, Ju Li, Raymond J. Gorte, Eric A. Stach, and Christopher B. Murray JACS, 135 4 1499-1505 (2013)
“Bistable Magnetoresistance Switching in Exchange-Coupled CoFe2O4-Fe3O4 Binary Nanocrystal Superlattices by Self-Assembly and Thermal Annealing,” Jun Chen, Xingchen Ye, Soong Ju Oh, James M. Kikkawa, Cherie R. Kagan, and Christopher B. Murray ACS Nano, 7(2) 1478-1486 (2013)
“Chemically Tailored Dielectric-to-Metal Transition for the Design of Metamaterials from Nanoimprinted Colloidal Nanocrystals,” Aaron T. Fafarman*, Sung-Hoon Hong*, Humeyra Caglayan, Xingchen Ye, Benjamin T. Diroll, Taejong Paik, Nader Engheta, Christopher B. Murray & Cherie R. Kagan Nano Letters, 13 (2) 350-357 (2013)
*=Equal Contributors
2012
“Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors,” David K. Kim*, Yuming Lai*, Benjamin T. Diroll, Christopher B. Murray & Cherie R. Kagan Nature Communications, 3 (1216) 1-6 (2012)
*=Equal Contributors
“The State of Nanoparticle-Based Nanoscience and Biotechnology: Progress, Promises, and Challenges,” Beatriz Pelaz, Sarah Jaber, Dorleta Jimenez de Aberasturi, Verena Wulf, Takuzo Aida, Jesus M. de la Fuente, Jochen Feldmann, Hermann E. Gaub, Lee Josephson, Cherie R. Kagan, Nicholas A. Kotov, Luis M. Liz-Marzan, Hedi Mattoussi, Paul Mulvaney, Christopher B. Murray, Andrey L. Rogach, Paul S. Weiss, Itamar Willner, and Wolfgang J. Parak, ACS Nano, 6 (10) 8468-8483 (2012)
“Metal Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation,” Marjan Saboktakin, Xingchen Ye, Soong Ju Oh, Sung-Hoon Hong, Aaron T. Fafarman, Uday K. Chettiar, Nader Engheta, Christopher B. Murray, and Cherie R. Kagan, ACS Nano, 6 (10) 8758-8766 (2012)
“Bandlike Transport in Strongly Coupled and Doped Quantum Dot Solids: A Route to High-Performance Thin-Film Electronics,” Ji-Hyuk Choi, Aaron T. Fafarman, Soong Ju Oh, Dong-Kyun Ko, David K. Kim, Benjamin T. Diroll, Shin Muramoto, J. Greg Gillen, Christopher B. Murray, and Cherie R. Kagan, Nano Letters, 12 (5) 2631-2638 (2012)
“Remote Doping and Schottky Barrier Formation in Strongly Quantum Confined Single PbSe Nanowire Field-Effect Transistors,” Soong Ju Oh, David K. Kim, and Cherie. R. Kagan, ACS Nano, 6 (5) 4328-4334 (2012)
“Wrinkles and deep folds as photonic structures in photovoltaics,” Jong Bok Kim, Pilnam Kim, Nicolas C. Pgard, Soong Ju Oh, Cherie R. Kagan, Jason W. Fleischer, Howard A. Stone and Yueh-Lin Loo, Nature Photonics, 6 327-332 (2012)
“An Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through the Use of Aromatic Additives,” Xingchen Ye, Linghua Jin, Humeyra Caglayan, Jun Chen, Guozhong Xing, Chen Zheng, Vicky Doan-Nguyen, Yijin Kang, Nader Engheta, Cherie R. Kagan, and Christopher B. Murray, ACS Nano, 6 2804-2817 (2012)
“Molecular Monolayers as Semiconducting Channels in Field Effect Transistors,” Cherie R. Kagan, Topics in Current Chemistry, 312 213-237, (2012)
2011
“Flexible, Low-Voltage, and Low-Hysteresis PbSe Nanowire Field-Effect Transistors,” David K. Kim, Yuming Lai, Tarun R. Vemulkar, and Cherie R. Kagan, ACS Nano, 5 (12) 10074-10083, (2011)
“Thiocyanate-capped PbS nanocubes: ambipolar transport enables quantum dot-based circuits on a flexible substrate,” Weon-kyu Koh , Sangameshwar R Saudari , Aaron T. Fafarman , Cherie R. Kagan , and Christopher B. Murray, Nano Letters, 11 (11) 4764-4767, (2011)
“Near-Infrared Absorption of Monodisperse Silver Telluride (Ag2Te) Nanocrystals and Photoconductive Response of Their Self-Assembled Superlattices,” Yu-Wen Liu, Dong-Kyun Ko, Soong Ju Oh, Thomas R. Gordon, Vicky Doan-Nguyen, Taejong Paik, Yijin Kang, Xingchen Ye, Linghua Jin, Cherie R. Kagan, and Christopher B. Murray, ACS Chemistry of Materials, 23 (21) 4657-4659, (2011)
“Diketopyrrolopyrrole-based p-bridged Donor-Acceptor Polymer for Photovoltaic Applications,” Wenting Li, Taegweon Lee, Soong Ju Oh, and Cherie R. Kagan, ACS Applied Materials and Interfaces, 3 (10) 3874-3883 (2011)
“Flexible Organic Electronics for Use in Neural Sensing,” Hank Bink*, Yuming Lai*, Sangamweshwar Rao Saudari, Brian Helfer, Jonathan Viventi, Jan Van der Spiegel, Brian Litt, Cherie Kagan, IEEE EMBC 2011 5400-5403 (2011)
* = Equal Contributors
“Thiocyanate Capped Nanocrystal Colloids: A Vibrational Reporter of Surface Chemistry and a Solution-based Route to Enhanced Coupling in Nanocrystal Solids,” Aaron T. Fafarman, Weon-kyu Koh, Benjamin T. Diroll, David K. Kim, Dong-Kyun Ko, Soong Ju Oh, Xingchen Ye, Vicky Doan-Nguyen, Michael R. Crump, Danielle C. Reifsnyder, Christopher B. Murray, and Cherie R. Kagan, Journal of the American Chemical Society, 133 (39), 15753-15761, (2011)
“Ambipolar and Unipolar PbSe Nanowire Field-Effect Transistors,” David K. Kim, Tarun R. Vemulkar, Soong-Ju Oh, Weon-kyu Koh, Christopher B. Murray and Cherie R. Kagan, ACS Nano, 5 (4), 3230-3236, (2011)
“Multiscale Periodic Assembly of Striped Nanocrystal Superlattice Films on a Liquid Surface,” Angang Dong, Jun Chen, Soong Ju Oh, Weon-kyu Koh, Faxian Xiu, Xingchen Ye, Dong-Kyun Ko, Kang L. Wang, Cherie R. Kagan, and Christopher B. Murray, Nano Letters, 11 (2), 841-846, (2011)
2010
“Comparison of the Energy-level Alignment of Thiolate- and Carbodithiolate-Bound Self-Assembled Monolayers on Gold,” Philip Schulz, Christopher D. Zangmeister, Yi-Lei Zhao, Paul R. Frail, Sangameshwar R. Saudari, Carlos A. Gonzalez, Cherie R. Kagan, Matthias Wuttig, and Roger D. van Zee, Journal of Physical Chemistry C, 114 (48), 20843-20851, (2010)
“Device Configurations for Ambipolar Transport in Flexible, Pentacene Transistors,” Sangameshwar Rao Saudari, Yu Jen Lin, Yuming Lai and Cherie R. Kagan, Advanced Materials, 44, 5063-5068, (2010)
“Small-Molecule Thiophene-C60 Dyads As Compatibilizers in Inverted Polymer Solar Cells,” Jong Bok Kim, Kathryn Allen, Soong Ju Oh, Stephanie Lee, Michael F. Toney, Youn Sang Kim, Cherie R. Kagan, Colin Nuckolls, and Yueh-Lin Loo, Chemistry of Materials, 22 (20), pp 5762-5773 (2010)
2009
“Ambipolar transport in solution-deposited pentacene transistors enhanced by molecular engineering of device contacts,” Sangameshwar Rao Saudari, Paul R. Frail, Cherie R. Kagan , Appl. Phys. Lett, 95, 023301 (2009)
2007
“Chemically Assisted Directed Assembly of Carbon Nanotubes for the Fabrication of Large-Scale Device Arrays,” G. S. Tulevski, J. Hannon, A. Afzali, Z. Chen, Ph. Avouris, C. R. Kagan, J. American Chemical Society, 129 (39), 11964 (2007)
“Alignment, Electronic Properties, Doping, and On-Chip Growth of Colloidal PbSe Nanowires,” D. V. Talapin, C. T. Black, C. R. Kagan, E. V. Shevchenko, A. Afzali, C. B. Murray, J. Phys. Chem. C, 111 (35), 13244 (2007)
“Synergistic Effects in Binary Nanocrystal Superlattices: Enhanced p-Type Conductivity in Self-Assembled PbTe/Ag2Te Thin Films,” J. J. Urban, D. V. Talapin, E. V. Shevchenko, C. R. Kagan, C. B. Murray, Nature Materials, 6 (2), 115 (2007).
“Molecular Assemblies: Briding the Gap to Form Molecular Junctions,” C. R. Kagan, C. Lin, in Multifunctional Conducting Molecular Materials, eds. G. Saito, F. Wudl, R. C. Haddon, K. Tanigaki, T. Enoki, H. E. Katz, M. Maesato, Royal Society of Chemistry, London 306, 248, (2007).
2006
“The Role of Chemical Contacts in Molecular Conductance,” N. D. Lang, C. R. Kagan, Nano Letters, 6, 2955 (2006).
“Enforced One-Dimensional Photoconductivity in Core-Cladding Hexabenzocorenenes,” Y. S. Cohen, S. Xiao, C. Nuckolls, C. R. Kagan, Nano Letters, 6, 2838 (2006).
“Organic and Organic-Inorganic Hybrid Molecular Devices,” Proceedings of the 12th International Micromachine/Nanotech Symposium, 31 (2006).
“Device Scaling in Sub-100 nm Pentacene FETs,” G. S. Tulevski, A. Afzali, T. O Graham, C. Nuckolls, C. R. Kagan, Applied Physics Letters, 89, 183101 (2006).
“Chemical Complementarity in the Contacts for Nanoscale Organic Field-Effect Transistors,” G. S. Tulevski, Q. Miao, A. Afzali, T. O. Graham, C. R. Kagan, C. Nuckolls, Journal of the American Chemical Society, 128, 1788 (2006).
2005
“Self-assembly and Oligomerization of Alkyne-Terminated Molecules on Metal and Oxide Surfaces,” L. Vyklicky, A. Afzali, C. R. Kagan, Langmuir, 21, 11574 (2005).
“Operational and Environmental Stability of Pentacene Thin Film Transistors,” C. R. Kagan, A. Afzali, T. O. Graham, Applied Physics Letters, 86, 193505 (2005).
“N-Sulfinylcarbamate-Pentacene Adduct; a Novel Pentacene Precursor Soluble in Alcohols,” A. Afzali, C. R. Kagan, G. Traub, Synthetic Metals, 155, 490 (2005).
“Electrostatic Field and Partial Fermi Level Pinning at the Pentacene-SiO2 Interface,” L. Chen, R. Ludeke, X. Cui, A. G. Schrott, C. R. Kagan, L. E. Brus, Journal of Physical Chemistry B, 109, 1834 (2005).
2004
“Molecular Transport Junctions: An Introduction,” C. R. Kagan, M. A. Ratner, MRS Bulletin, edited by C. R. Kagan, M. A. Ratner, 29, 376 (2004).
“Direct Assembly of Organic Semiconductors on Gate Oxides,” G. S. Tulevski, Q. Miao, M. Fukuto, R. Abram, B. Ocko, R. Pindak, C. R. Kagan, C. Nuckolls, Journal of the American Chemical Society, 126, 15048 (2004).
“Understanding the Molecular Transistor,” P. Solomon, C. R. Kagan in Future Trends in Microelectronics: The Nano, the Giga, and the Ultra, edited by S. Luryi, J. Xu, A. Zaslavsky, Wiley, NY (2004), p.168.
2003
“Evaluations and Considerations for Self-Assembled Monolayer Field-Effect Transistors,” C. R. Kagan, A. Afzali, R. Martel, L. M. Gignac, P. M. Solomon, A. Schrott, B. Ek, Nano Letters, 3, 119 (2003).
“Layer-by-Layer Growth of Metal-Metal Bonded Supramolecular Thin Films and Its Use in the Fabrication of Lateral Nanoscale Devices,” C. Lin and C. R. Kagan, Journal of the American Chemical Society, 125, 336 (2003).
“Organic-Inorganic Thin Film Transistors,” D. B. Mitzi, C. R. Kagan in Thin Film Transistors, edited by C. R. Kagan, P. S. Andry, Marcell-Dekker, NY, (2003), p. 475.
“Charge Transport on the Nanoscale,” D. Adams, L. Brus, C. E. D. Chidsey, S. Creager, C. Creutz, C. R. Kagan, P. Kamat, M. Lieberman, S. Lindsay, R. A. Marcus, R. M. Metzger, M. E. Michel-Beyerle, J. R. Miller, M. D. Newton, D. R. Rolison, O. Sankey, K. S. Schanze, J. Yardley, X. Zhu, Journal of Physical Chemistry B, 107, 6668 (2003).
2002
“An efficient synthesis of symmetrical oligothiophenes: Synthesis and transport properties of a soluble sexithiophene derivative,” A. Afzali, T. L. Breen, C. R. Kagan, Chemistry of Materials, 14(4), 1742 (2002) .
2001
“Patterning Organic-Inorganic Thin-Film Transistors Using Microcontact Printed Templates,” C. R. Kagan, T. L Breen, L. L. Kosbar, Applied Physics Letters 79 (21), 3536 (2001).
“Organic-Inorganic Electronics,” D. B. Mitzi, K. Chondroudis, C. R. Kagan, IBM Journal of Research and Development, 45, 29 (2001).
“Colloidal Synthesis of Nanocrystals and Nanocrystal Superlattices,” C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. Betley, C. R. Kagan, IBM Journal of Research and Development, 45, 47 (2001).
2000
“Synthesis and Characterization of Monodisperse Nanocrystals and Close Packed Nanocrystal Assemblies,” C. B. Murray, C. R. Kagan, M. G. Bawendi, Annual Review of Materials Science 30, 545, (2000).
“Photoconductivity in CdSe Quantum Dot Solids,” C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, Physical Review B, 62, 2669 (2000).
1999
“Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors,” C. R. Kagan, D. B. Mitzi, C. D. Dimitrakopoulos, Science, 286, 945 (1999).
“Design, Structure, and Optical Properties of Organic-Inorganic Perovskites Containing an Oligothiophene Chromophore,” David B. Mitzi, Konstantinos Chondroudis, Cherie R. Kagan, Inorganic Chemistry 38, 6246 (1999).
“Charge Generation and Transport in CdSe Semiconductor Quantum Dot Solids,” C. A. Leatherdale, N. Y. Morgan, C. R. Kagan, S. A. Empedocles, M. G. Bawendi, M. A. Kastner, MRS Proceedings 571, 191 (1999).
1998
“Submicron Confocal Raman Imaging of Holograms in Multicomponent Photopolymers,” C. R. Kagan, T. D. Harris, A. L. Harris, and M. L. Schilling, Journal of Chemical Physics, 108, 6892 (1998).
1996
“Long Range Resonance Transfer of Electronic Excitations in Close Packed CdSe Quantum Dot Solids,” C. R. Kagan, C. B. Murray, and M. G. Bawendi, Physical Review B, 54, 8633 (1996).
“Electronic Energy Transfer in CdSe Quantum Dot Solids,” C. R. Kagan, C. B. Murray, M. Nirmal, M. G. Bawendi, Physical Review Letters, 76, 1517 (1996).
1995
“Self Organization of CdSe Nanocrystallites into Three Dimensional Quantum Dot Superlattices,” C. B. Murray, C. R. Kagan, and M. G. Bawendi, Science, 270, 1335 (1995).
“Synthesis, Structural Characterization, and Optical Spectroscopy of Close Packed CdSe Nanocrystallites,” C. R. Kagan, C. B. Murray, M. G. Bawendi, MRS Proceedings, 358, 219 (1995).
1993
“Solution Precipitation of CdSe Quantum Dots,” C. R. Kagan, M. J. Cima, MRS Proceedings, 283, 841 (1993).
1992
“Ion-Exchange Reactions of Potassium Brannerite, K0.8(V0.8Mo1.2)O6,” Peter K. Davies and Cherie R. Kagan, Solid State Ionics, 53-56, 546-552 (1992).
Books and Journals Edited
“Molecular Transport Junctions,” edited by C. R. Kagan, M. A. Ratner, MRS Bulletin, Materials Research Society, PA, (2004).
“Thin Film Transistors,” edited by C. R. Kagan, P. S. Andry, Marcell-Dekker, NY, (2003).